Проверка дпдз осциллографом – Motorhelp.ru диагностика и ремонт двигателя

Motorhelp.ru диагностика и ремонт двигателя

Цифровой осциллограф позволяет эффективно отслеживать и находить неисправности в датчиках системы впрыска. В этой статье рассмотрим подробно осциллограммы с датчиков:
  1. Положения коленчатого вала
  2. Датчика массового расхода воздуха
  3. Датчика положения дроссельной заслонки
  4. Датчика положения распредвала
  5. Лямбда-зонда
  6. Датчика холла
  7. Датчика детонации
  8. Датчика абсолютного давления
  9. Датчика скорости автомобиля

ДПКВ

Датчик положения коленчатого вала (ДПКВ) самый главный в системе впрыска, по нему осуществляется синхронизация работы электронного блока управления двигателем. Сигнал вазовского дпкв представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала.

Задающий диск представляет собой зубчатое колесо 60-2, т.е. 58 равноудаленных зубцов и два отсутствующих для синхронизации. При вращении задающего диска вместе с коленчатым валом впадины изменяют магнитный поток в магнитопроводе датчика, наводя импульсы напряжения переменного тока в его обмотке.

Осциллограмма индуктивного ДПКВ имеет следующий вид:

Здесь стоит обратить внимание на амплитуду сигнала и форму импульсов. Если витки в обмотке датчика будут короткозамкнуты, то амплитуда сигнала будет снижена. Также по осциллограмме легко вычислить биение задающего диска и повреждение зубцов.
На некоторых иномарках в качестве ДПКВ используется датчик Холла, вырабатывающий прямоугольные импульсы.
Вот типичный пример осциллограммы такого датчика (Hyundai Sonata):

А вот так синхронно работают датчики положения коленчатого и распределительного валов двигателей Nissan. По нарастающим фронтам сигналов можно определить смещение валов относительно друг друга.

А это осциллограмма типичной неисправности датчика Холла (Audi 100). Нарастающий фронт «срезан», сигнал такого датчика блок управления не распознает.

На старых Опелях и Daewoo Nexia в качестве датчика синхронизации используется индукционная катушка с задающим диском.
Осциллограмма такого датчика имеет такой вид:

Датчик положения распредвала

ДПРВ используется в системе управления двигателем для определения положения распределительного вала, что необходимо для синхронизации впрыска топлива. Датчик генерирует один импульс за полный цикл работы двигателя (720 градусов поворота коленчатого вала).

Импульс датчика положения распредвала указывает на верхнюю мертвую точку первого цилиндра.

ДМРВ

Датчик массового расхода воздуха (ДМРВ) применяются во многих системах управления двигателем (в частности ВАЗ) для измерения значения мгновенного расхода воздуха. Выходной сигнал ДМРВ Bosch HFM5 представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от массы воздуха, проходящего через датчик. При нулевом расходе исправный датчик должен иметь выходное напряжение около 1В. Эталоном считается значение 0,996В.

По осциллограмме можно отследить 2 важных момента:
1. Скорость реакции ДМРВ можно оценить по времени переходного процесса выходного сигнала при подаче питания на датчик.
2. Выходное напряжение датчика при нулевом расходе воздуха (двигатель остановлен).
Осциллограмма исправного ДМРВ при подаче питания имеет следующий вид.

Время переходного процесса равно 0,5 мс. Выходное напряжение при нулевой подаче воздуха равно 0,996 В.

А это осциллограмма выходного напряжения при включении питания неисправного ДМРВ.

Время переходного процесса такого датчика в десятки раз больше, чем исправного, а значит время реакции самого датчика будет значительно снижено и автомобиль будет «вяло» набирать скорость. Выходное напряжение такого ДМРВ при остановленном двигателе равно 1,13 В., что говорит о значительном отклонении сигнала от нормы. Двигатель с неисправным датчиком в значительной степени потеряет «приемистость», будет затруднен пуск и возрастет расход топлива.
Важно: система самодиагностики блока управления двигателем не способна выявить снижение скорости реакции ДМРВ. Такую неисправность можно найти только путем диагностики с применением осциллографа.
Осциллограмма выходного напряжения изношенного ДМРВ при резком открытии дроссельной заслонки.

При значительном загрязнении чувствительного элемента датчика, скорость реакции на изменение воздушного потока снижается и форма осциллограммы становится более «сглаженной».
Исправный датчик при быстром открытии дроссельной заслонки должен выдавать кратковременно в первом импульсе более 4 В.
ДМРВ Bosch

Лямбда-зонд

По анализу осциллограммы выходного сигнала лямбда-зонда на различных режимах работы двигателя можно оценить как исправность самого датчика, так и исправность всей системы управления двигателем.
Осциллограмма напряжения исправного циркониевого лямбда имеет следующий вид:

Здесь следует обратить внимание прежде всего на 3 момента:

1. Размах напряжения выходного сигнала должен быть от 0,05-0,1 В до 0,8-0,9 В. При условии, что двигатель прогрет до рабочей температуры и система управления работает по замкнутой петле обратной связи.
2. Время перехода выходного напряжения зонда от низкого к высокому уровню не должно превышать 120 мс.
3. Частота переключения выходного сигнала лямбда-зонда на установившихся режимах работы двигателя должна быть не реже 1-2 раз в секунду.

ДПДЗ

Датчик положения дроссельной заслонки (ДПДЗ) служит для отслеживания угла открытия дроссельной заслонки и представляет собой потенциометр. Опорное напряжение датчика равно 5 В. Сигнал исправного ДПДЗ представляет собой напряжение постоянного тока в диапазоне от 0,5 до 4,5 В. При повороте дроссельной заслонки, сигнал должен меняться плавно, без скачков и провалов.

Пример осциллограммы двух датчиков положения дроссельной заслонки VW Passat с двигателем RP показана на рисунке ниже.

Один из датчиков работает в диапазоне от 0 до 25% открытия дроссельной заслонки, а второй от 25 до 100%.

Датчик абсолютного давления (ДАД)

На основании данных с этого датчика о разряжении и температуре во впускном коллекторе, блок управления рассчитывает количество воздуха, поступающего в цилиндры двигателя. Принцип действия основан на преобразовании значения давления в соответствующую величину выходного напряжения. Применяемые в современных системах управления двигателем датчики чрезвычайно надежны. Проверить работу датчика абсолютного давления можно осциллографом, подключившись к его сигнальному выходу.

Осциллограмма с датчика при открытии дроссельной заслонки имеет такой вид:

Датчик детонации (ДД)

Наиболее распространенный широкополосный датчик детонации пьезоэлектрического типа с генерирует сигнал напряжения переменного тока с частотой и амплитудой зависящей от степени «шума», который издает та часть двигателя, на которую он установлен. При возникновении детонации амплитуда вибраций повышается, что приводит к увеличению напряжения выходного сигнала ДД. При этом контроллер корректирует угол опережения зажигания для гашения детонации.

Проверить датчик детонации можно на столе, подключившись щупами осциллографа к его выводам. При легком постукивании металлическим предметом на осциллограмме отобразятся такие импульсы:

Датчик скорости автомобиля
Как правило такие датчики имеют в своей основе элемент Холла. Однако встречаются и индуктивные датчики.
Типичный пример осциллограммы индуктивного датчика скорости автомобиля Ауди 100 имеет такой вид:

Индуктивный датчик АБС
Хоть этот датчик не относится к системе впрыска, но раз уж попалась на глаза, выкладываю осциллограмму.

Такой вид имеет сигнал с индуктивного датчика системы АБС.

Обратите внимание на амплитуду сигнала. В данном конкретном случае осциллограмма снята при простом прокручивании колеса рукой. Однако если датчик имеет короткозамкнутые витки, то его амплитуда будет значительно меньше. Сигнал такого датчика блок управления АБС не «увидит».скачать dle 10.6фильмы бесплатно

www.motorhelp.ru

ГАЗ 31 105, Принцесса дороги… › Бортжурнал › Диагностика своими руками. Часть VI. Осциллограф, просто о сложном.

После последней записи многие задали массу вопросов об осциллограмме и работе самого осциллографа.
И вот, порывшись в своих старых файлах, я нашёл простые Flash файлы в формате .exe, которые не требуют никакого дополнительного ПО и прочих манипуляций, включил и смотри.

Главный плюс — наглядная демонстрация. Всё понятно, просто, без лишней информации.
Так что прошу, всё скинул в один архив (.zip). Можете скачивать. Ну а ниже, я подробно опишу что находится внутри. Заголовок — имя файла. Потому найти всё просто.
— Архив с файлами —

Описание анализа вторичной цепи зажигания

Вот это самый главный, как модно сейчас говорить, MUST HAVE.
Крайне простое, краткое, но в то же время, исчерпывающее описание. Просто с помощью одного этого файла Вы сможете понять, что у Вас происходит с системой зажигания.

Страница с описанием нормы


Страница с описание дефекта.


Внизу 2 стрелки, далее и назад. Просто листаем.
В правом верхнем углу описание, нормальная ли ситуация или же имеет дефект. Серым изображена осциллограмма нормальной работы, для сравнения с дефектом.
Как только дойдёте до конца, клавиша далее просто перестанет перелистывать страницы.
В общем настоятельно рекомендую.

Трамблёрная система зажигания

По большей части — игрушка. Позволяет нам «испортить» узлы системы зажигания и увидеть, как это вмешательство отразится на графике. Отличительная особенность — трамблёрная система зажигания. Если в первом файле упор был на инжектора, то тут уже трамблёр.

Все узлы исправны


Ну а тут я сделал всё что смог


Внизу, слева мы выбираем элемента, нажав на него левой клавишей мыши. И с его помощью воздействуем на нужный узел. К примеру режем ВВ провода. Мажем свечи маслом. Или нагаром. Портим коммутатор или катушку.
Вроде игрушка, но немного вдумавшись, оказывается полезным. Особенно после ознакомления с первым файлом, когда известны основы.

Анализ вторичной цепи зажигания (Disco Express)

В принципе ничего нового, но полезно обладателям комплекса от Мотор-Мастер.

Окно самого файла

На этом описание работы системы зажигания завершено, но имеется ещё пара файлов и отдельная папка. Думаю они лишними не будут.

Проверка ДПДЗ

Описание о том, как можно проверить Датчик Положения Дроссельной Заслонки при помощи осциллографа. Как известно, ДПДЗ это простые дорожки, но рано или поздно они стираются. Как ни крути само авто не сможет корректно указать на проблему. Потому потребуется подключение напрямую и проверка самого ДПДЗ. Очень часто именно осциллограф помогает выявить в нём неисправность. В то время как аналогичные тесты с помощью диагностики адаптером и ПО, указывают на ровный график и отсутствие неполадок.

График неисправного ДПДЗ

Проверка фаз

Внутри этой папки имеются файлы:
— Фазы норма
— Подсос воздуха во впускном коллекторе
— Распредвал установлен на 1 зуб раньше
— Выпускной распредвал установлен на 1 зуб позже
— Выпускной распредвал установлен на 2 зуба раньше

Как видно, тут описан анализ меток с помощью осциллографа. Этот материал сложнее. Требуется более дорогое оборудование, которое позволяет при подключении в ДПКВ, ДПРВ и с помощью дополнительных датчиков, входящих в комплект диагностических комплексов (датчик давления, кабели DIS-4 или DIS-8 и т.д.).
Материал скорее для ознакомления. Но указывает, что для проверки фаз не всегда требуется смотреть на метки. Современное оборудование помогает провести это просто и без лишнего вмешательства.

Надеюсь представленная информация была полезна.
Пишите, задавайте свои вопросы, на их основе я и буду выкладывать дальнейший материал по диагностике, чтобы он был максимально полезен.

www.drive2.ru

Проверка датчиков системы впрыска осциллографом

Проверка датчиков системы впрыска осциллографом.

Цифровой осциллограф позволяет эффективно отслеживать и находить неисправности в датчиках системы впрыска. В этой статье рассмотрим подробно осциллограммы с датчиков:
  1. Положения коленчатого вала
  2. Датчика массового расхода воздуха
  3. Датчика положения дроссельной заслонки
  4. Датчика положения распредвала
  5. Лямбда-зонда
  6. Датчика холла
  7. Датчика детонации
  8. Датчика абсолютного давления
  9. Датчика скорости автомобиля

Датчик положения коленчатого вала (ДПКВ) самый главный в системе впрыска, по нему осуществляется синхронизация работы электронного блока управления двигателем. Сигнал вазовского дпкв представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала.

Задающий диск представляет собой зубчатое колесо 60-2, т.е. 58 равноудаленных зубцов и два отсутствующих для синхронизации. При вращении задающего диска вместе с коленчатым валом впадины изменяют магнитный поток в магнитопроводе датчика, наводя импульсы напряжения переменного тока в его обмотке.
Осциллограмма индуктивного ДПКВ имеет следующий вид:

Здесь стоит обратить внимание на амплитуду сигнала и форму импульсов. Если витки в обмотке датчика будут короткозамкнуты, то амплитуда сигнала будет снижена. Также по осциллограмме легко вычислить биение задающего диска и повреждение зубцов.
На некоторых иномарках в качестве ДПКВ используется датчик Холла, вырабатывающий прямоугольные импульсы.
Вот типичный пример осциллограммы такого датчика (Hyundai Sonata):

А вот так синхронно работают датчики положения коленчатого и распределительного валов двигателей Nissan. По нарастающим фронтам сигналов можно определить смещение валов относительно друг друга.

А это осциллограмма типичной неисправности датчика Холла (Audi 100). Нарастающий фронт «срезан», сигнал такого датчика блок управления не распознает.

На старых Опелях и Daewoo Nexia в качестве датчика синхронизации используется индукционная катушка с задающим диском.
Осциллограмма такого датчика имеет такой вид:

ДПРВ используется в системе управления двигателем для определения положения распределительного вала, что необходимо для синхронизации впрыска топлива. Датчик генерирует один импульс за полный цикл работы двигателя (720 градусов поворота коленчатого вала).

Импульс датчика положения распредвала указывает на верхнюю мертвую точку первого цилиндра.

Датчик массового расхода воздуха (ДМРВ) применяются во многих системах управления двигателем (в частности ВАЗ) для измерения значения мгновенного расхода воздуха. Выходной сигнал ДМРВ Bosch HFM5 представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от массы воздуха, проходящего через датчик. При нулевом расходе исправный датчик должен иметь выходное напряжение около 1В. Эталоном считается значение 0,996В.
По осциллограмме можно отследить 2 важных момента:
1. Скорость реакции ДМРВ можно оценить по времени переходного процесса выходного сигнала при подаче питания на датчик.
2. Выходное напряжение датчика при нулевом расходе воздуха (двигатель остановлен).
Осциллограмма исправного ДМРВ при подаче питания имеет следующий вид.

Время переходного процесса равно 0,5 мс. Выходное напряжение при нулевой подаче воздуха равно 0,996 В.

А это осциллограмма выходного напряжения при включении питания неисправного ДМРВ.

Время переходного процесса такого датчика в десятки раз больше, чем исправного, а значит время реакции самого датчика будет значительно снижено и автомобиль будет «вяло» набирать скорость. Выходное напряжение такого ДМРВ при остановленном двигателе равно 1,13 В. что говорит о значительном отклонении сигнала от нормы. Двигатель с неисправным датчиком в значительной степени потеряет «приемистость», будет затруднен пуск и возрастет расход топлива.
Важно: система самодиагностики блока управления двигателем не способна выявить снижение скорости реакции ДМРВ. Такую неисправность можно найти только путем диагностики с применением осциллографа.
Осциллограмма выходного напряжения изношенного ДМРВ при резком открытии дроссельной заслонки.

При значительном загрязнении чувствительного элемента датчика, скорость реакции на изменение воздушного потока снижается и форма осциллограммы становится более «сглаженной».
Исправный датчик при быстром открытии дроссельной заслонки должен выдавать кратковременно в первом импульсе более 4 В.
ДМРВ Bosch

По анализу осциллограммы выходного сигнала лямбда-зонда на различных режимах работы двигателя можно оценить как исправность самого датчика, так и исправность всей системы управления двигателем.
Осциллограмма напряжения исправного циркониевого лямбда имеет следующий вид:

Здесь следует обратить внимание прежде всего на 3 момента:
1. Размах напряжения выходного сигнала должен быть от 0,05-0,1 В до 0,8-0,9 В. При условии, что двигатель прогрет до рабочей температуры и система управления работает по замкнутой петле обратной связи.
2. Время перехода выходного напряжения зонда от низкого к высокому уровню не должно превышать 120 мс.
3. Частота переключения выходного сигнала лямбда-зонда на установившихся режимах работы двигателя должна быть не реже 1-2 раз в секунду.

Датчик положения дроссельной заслонки (ДПДЗ) служит для отслеживания угла открытия дроссельной заслонки и представляет собой потенциометр. Опорное напряжение датчика равно 5 В. Сигнал исправного ДПДЗ представляет собой напряжение постоянного тока в диапазоне от 0,5 до 4,5 В. При повороте дроссельной заслонки, сигнал должен меняться плавно, без скачков и провалов.
Пример осциллограммы двух датчиков положения дроссельной заслонки VW Passat с двигателем RP показана на рисунке ниже.

Один из датчиков работает в диапазоне от 0 до 25% открытия дроссельной заслонки, а второй от 25 до 100%.

На основании данных с этого датчика о разряжении и температуре во впускном коллекторе, блок управления рассчитывает количество воздуха, поступающего в цилиндры двигателя. Принцип действия основан на преобразовании значения давления в соответствующую величину выходного напряжения. Применяемые в современных системах управления двигателем датчики чрезвычайно надежны. Проверить работу датчика абсолютного давления можно осциллографом, подключившись к его сигнальному выходу.
Осциллограмма с датчика при открытии дроссельной заслонки имеет такой вид:

Наиболее распространенный широкополосный датчик детонации пьезоэлектрического типа с генерирует сигнал напряжения переменного тока с частотой и амплитудой зависящей от степени «шума», который издает та часть двигателя, на которую он установлен. При возникновении детонации амплитуда вибраций повышается, что приводит к увеличению напряжения выходного сигнала ДД. При этом контроллер корректирует угол опережения зажигания для гашения детонации.
Проверить датчик детонации можно на столе, подключившись щупами осциллографа к его выводам. При легком постукивании металлическим предметом на осциллограмме отобразятся такие импульсы:

Датчик скорости автомобиля
Как правило такие датчики имеют в своей основе элемент Холла. Однако встречаются и индуктивные датчики.
Типичный пример осциллограммы индуктивного датчика скорости автомобиля Ауди 100 имеет такой вид:

Индуктивный датчик АБС
Хоть этот датчик не относится к системе впрыска, но раз уж попалась на глаза, выкладываю осциллограмму.
Такой вид имеет сигнал с индуктивного датчика системы АБС.

Обратите внимание на амплитуду сигнала. В данном конкретном случае осциллограмма снята при простом прокручивании колеса рукой. Однако если датчик имеет короткозамкнутые витки, то его амплитуда будет значительно меньше. Сигнал такого датчика блок управления АБС не «увидит».скачать dle 10.6 фильмы бесплатно

ВернутьсяКомментариев: 0

Наш сайт рекомендует:

Стартовало производство суперкара Ford GT

Вчерашним днем был выпущен Ford GT в продажу, который ждали с 2015 года. Стоит отметить, что его сборкой занимается не компания Ford на своих предприятиях, а автомобильная корпорация Multimatic на.

Руководство BMW презентовала новое гоночное авто M4 GT4

10 декабря в рамках спортивного мероприятия руководство компании BMW неожиданно для гостей презентовало новое гоночное авто M4 GT4. Конечно же машина еще далека от полной сборки, а руководство.

BMW планирует показать рост продаж в России на фоне падения рынка

По данным портала «Колеса.ру», Смирнова отметила, что указанный результат продаж за 11 месяцев 2016-го является выдающимся не только на фоне общего падения рынка на 12%, но и в премиальном сегменте.

Volkswagen в ноябре сократил поставки автомобилей в Германию

По данным специалистов, в целом в мире в 2016 году объемы поставок машин Volkswagen Group увеличились. В частности, в ноябре компания увеличила объем поставок на мировом рынке до 859 400 автомобилей.

Самой популярной иномаркой ноября в России стала KIA Rio

Самой востребованной на российском рынке машиной в ноябре этого года стала KIA Rio. Об этом сообщают аналитики «Автостата». В прошлом месяце жители России купили 8 367 автомобилей марки KIA.

http://motorhelp.ru

legkoe-delo.ru

Ford Probe Когда-то был металлолом › Бортжурнал › Проверка и настройка датчиков MAF, ДПДЗ, ДСО.

Я так думаю кому то да пригодится.
На днях пробка начала плохо себя вести и много кушать. Без замедления решил разобраться с проблемой так как ездить с рывками было не в кайф.
Посидев денёк в инете и почитав умные книги взялся за дело.
Для всего нам понадобится прямые руки, трезвый ум .
Из инструментов небольшой набор ключей в частности на 10/12 , плоская и крестовая отвёртка, набот звёздочек, два рожковых ключа на 15 и 14, тестер, но лучше осциллограф (у осциллографа меньше погрешность) Набор щупов. щ

И так, проверка и регулировка датчика положения дроссельной заслонки в дальнейшем ДПДЗ
1. Отсоедините разъём с датчика ДПДЗ
2. Подсоединяем тестер или осциллограф на две нижние клеммы они именуются REF и SIG
3. Выставляем прибор на проверку сопротивления
4. В ручную плавно открываем заслонку
В ходе диагностики наши показатели сопротивления должны плавно меняться, не должно быть скачков и резких пропаданий сопротивления.
Если все прошло успешно и нет прострелов следуем за второй частью диагностики.
5. Проверяем питание на фишке между контактами REF и GND оно должно составлять 5.0 Вольт
6. Подсоединяем фишку на датчик подключаем прибор к контактам GND и SIG, в закрытом положении у нас должно показывать 0,5 — 1,0 Вольт, в полностью открытом 3,5 — 5,0 Вольт.
7. Если показания выходят за рамки, отрегулируйте датчик открутив два винта звёздочками и проворачивая его за или против часовой стрелки так что бы на тестере показало питание при закрытой заслонке в диапазоне от 0,5 до1,0 вольта.
Если не удалось настроить даный диапазон или есть провалы питания при открытии заслонки рекомендую заменить датчик.

Регулировка датчика сбрасывания оборотов в дальнейшем ДСО.

1. Открутите датчик ДСО при помощи двух ключей на 14 и 15.
2. Подсоедините Омметр
3. Встав те щуп между датчиком и лапкой дросселя
а. -94 автомат 0,25мм
б. -94 механика 0,4мм
в. 95- 0,15мм
4.Поверните датчик на 30 градусов за часовой стрелкой и затем обратно до момента появления проводимости.
5. Зафиксируйте датчик контргайкой.
6. Встав те щуп указанной толщины между датчиком и лапкой дросселя
а. -94 АВТ 0,4мм
б. -94 МЕХ 0,7мм
в. 95- 0,5мм
7.Если проводимость присутствует, повторно отрегулируйте датчик.
В случаи если проводимость будет присутствовать и далее желательно заменить датчик.

Проверка работы датчика расхода воздуха в дальнейшем MAF и замена его на аналог (к примеру на Волговский ДМРВ ИВКШ407282000-01

1. На разъёме питания три провода
а.Красный с чёрным 12+(крайний левый) 1
б.Черныйс красным SIG + (Центральный) 2
в.чёрный 12- (крайний правый) 3
Цвета могут разница.
2. подсоединяем одну клемму тестера на массу а вторую на центральный провод SIG.
3. Включаем зажигание
Показатели
Обороты MAF
Вкл ———————-1,23 в
хх(750)——————1,8 в
1000———————1,9 в
1500———————2,0 в
2000———————2,12 в
2500———————2,22 в
3000———————2,32 в
3500——————-2,42 в
Если карта сильно не совпадает, требуется заменить маф. Все мы знаем сколько бабла он стоет и зтесь появляется альтернативная замена ДМРВ от волги и цена вкусная за новый и работает идентично. Так же можно переделать почти любой другой маф под наше авто.
пример по волговскому
ИВКШ 407282000-01
______ДМРВ______MAF
Ов _____1—————3
-Дмрв___2—————3
+Дмрв___3—————2 Сюда же ставим диод
Прожиг__4—————(-)не подкл
12+_____5—————1
Рег СО__6_________(-)не подкл
Диод ставим пропуском плюса с датчика к мозгам.

Вот и всё ребята, чуть позже добавлю фотки и схемы . Будут вопросы, обращайтесь.

www.drive2.ru

Проверка датчиков дроссельной заслонки автомобиля

ДПДЗ размещается на корпусе узла дросселя. Его задача состоит в отслеживании положений дроссельной заслонки. Базируясь на показаниях датчика дроссельной заслонки, ЭСУД позволяет не только контролировать все режимы двигателя — холостой ход, умеренную нагрузку, режим нарастания скорости, но и осуществляет коррекцию подачи горючего в агрегат в зависимости от скорости изменения положения ДПДЗ. Поэтому так важно следить за исправностью этого прибора и своевременно проводить проверку датчика дроссельной заслонки.

При осуществлении движения дроссельной заслонки сигнал должен реагировать плавно, без провалов и резких скачков. Неисправность датчика дроссельной заслонки приводит к дисбалансу работы ЭСУД, а именно:

  • возникает неравномерность холостых оборотов мотора;
  • происходит прекращение работы мотора при резком сбросе педали газа;
  • мощность двигателя существенно снижается;
  • появляются резкие рывки при разгоне мотора вследствие неустойчивой работы ДПДЗ.
Чтобы проверить датчик дроссельной заслонки, нужно обратиться в автосервис, где специалисты располагают специальным оборудованием и необходимыми приборами. Диагностика выходного сигнала датчика проводится с помощью специального прибора — цифрового осциллографа, при этом персонал руководствуется методикой ее проведения. Нередко наряду с проверкой ДПДЗ проводится осциллографическая проверка датчика коленвала, участвующего в синхронизации работы ЭСУД.

Схемы подключения осциллографа к ДПДЗ для осуществления диагностирования зависит от типа датчика, марки авто и вида двигателя. Методика диагностики состоит в проверке соответствия выходного напряжения ДПДЗ фактическому положению заслонки во всех возможных проявлений ее действия. В случае неработоспособности датчика, мастера профессионально проведут замену датчика дроссельной заслонки соответствующего типа. После установки нового датчика специалисты обязаны провести регулировку датчика дроссельной заслонки.

mv-avto.ru

Устройство, принцип действия, диагностика датчика положения дроссельной заслонки Throttle Position Sensor (TPS).

 

Датчик положения дроссельной заслонки расположен на корпусе узла дроссельной заслонки. Служит для измерения степени открытия дроссельной заслонки.  

  

Датчик положения дроссельной заслонки.

  Чувствительный элемент датчика положения дроссельной заслонки представляет собой потенциометр, ось которого жёстко связана с осью дроссельной заслонки. На питающие выводы потенциометра подается опорное напряжение +5 V и «масса», а подвижный контакт датчика является сигнальным. Выходной сигнал датчика положения дроссельной заслонки является одним из базовых для расчёта блоком управления двигателем необходимого количества топлива, для определения текущего режима работы двигателя и для расчёта оптимального угла опережения зажигания. Например, в режиме пуска двигателя количество подаваемого топлива рассчитывается по температуре двигателя, по степени открытия дроссельной заслонки и по фактической частоте вращения коленвала.   На работающем двигателе при закрытой дроссельной заслонке блок управления двигателем переходит в режим стабилизации частоты вращения коленчатого вала двигателя — режим поддержания холостого хода. Заданная частота вращения коленвала при этом зависит от температуры охлаждающей жидкости, от нагрузки на двигатель и от скорости движения автомобиля и регулируется путём изменения степени открытия регулятора холостого хода и изменения угла опережения зажигания.   Для устранения «провала» запаздывания набора оборотов в момент резкого открытия дроссельной заслонки, блок управления двигателем кратковременно подает дополнительную порцию топлива.   Если дроссельная заслонка открыта более чем на ~70 %, блок управления двигателем переходит в режим полной нагрузки, обеспечивая максимальную мощность двигателя путём приготовления несколько обогащённой топливовоздушной смеси.   Когда при движении автомобиля дроссельная заслонка резко закрывается, блок управления двигателем активирует режим принудительного холостого хода (или режим торможения двигателем) путём полного прекращения подачи топлива до тех пор, пока обороты двигателя не снизятся до определенной величины.   Остальные относительно стационарные положения дроссельной заслонки между режимом «поддержки холостого хода» и «полной нагрузки», называются режимом «частичной нагрузки» двигателя. В этом режиме блок управления двигателем поддерживает оптимальное соотношение топливно-воздушной смеси близкой к 1:14,7, за счет использования сигнала обратной связи от кислородных датчиков.  

Проверка выходного сигнала датчика положения дроссельной заслонки.

Диагностика датчика положения дроссельной заслонки потенциометрического типа заключается в проверке соответствия выходного напряжения датчика фактическому положению дроссельной заслонки во всём диапазоне её возможных положений. Для просмотра осциллограммы напряжения выходного сигнала датчика, разъём осциллографического щупа должен быть подключен к любому из аналоговых входов № 14 USB Autoscope II, чёрный зажим типа «крокодил» осциллографического щупа должен быть подсоединён к «массе» двигателя диагностируемого автомобиля, пробник щупа должен быть подсоединён параллельно сигнальному выводу датчика.  

Схема подключения к датчику положения дроссельной заслонки потенциометрического типа.  

  1. точка подключения чёрного зажима типа «крокодил» осциллографического щупа. 
  2. точка подключения пробника осциллографического щупа.

    В окне программы «USB Осциллограф», необходимо выбрать подходящий режим отображения, в данном случае «Управление => Загрузить настройки пользователя => Potentiometer». Проверка датчика проводится при включенном зажигании и остановленном двигателе.   Осциллограмма напряжения выходного сигнала датчика должна быть записана. Для включения записи осциллограммы, в окне программы «USB Осциллограф», необходимо выбрать «Управление => Запись» после выбора режима «Potentiometer» и включения зажигания. После включения записи осциллограммы, необходимо как можно более плавно открыть дроссельную заслонку до её полного открытия, после чего так же плавно её закрыть. Далее, для остановки записи осциллограммы, в окне программы «USB Осциллограф», необходимо выбрать «Управление => Запись». После завершения записи, записанную осциллограмму можно детально изучить.   При закрытой дроссельной заслонке, значение напряжения выходного сигнала датчика его положения должно находиться в определённом диапазоне, чаще всего — 0,25…0,75 V. Как только дроссельная заслонка начинает плавно открываться, значение напряжения выходного сигнала датчика так же должно плавно увеличиваться синхронно увеличению угла открытия дроссельной заслонки.  

Осциллограмма напряжения выходного сигнала исправного датчика положения дроссельной заслонки. Зажигание включено, двигатель остановлен, плавное открытие дроссельной заслонки и быстрое её закрытие.

  Когда дроссельная заслонка открыта полностью, значение напряжения выходного сигнала датчика должно находиться в диапазоне обычно 3,9.. .4,7 V.   В некоторых системах управления двигателем применяются датчики положения дроссельной заслонки потенциометрического типа с инверсной выходной характеристикой. При закрытой дроссельной заслонке выходное напряжение датчика высокое, а при открытой — низкое.   Во многих системах управления двигателем, где положение дроссельной заслонки задаётся при помощи электропривода (во всём диапазоне возможных положений, либо только в режиме холостого хода), текущее положение дроссельной заслонки определяется при помощи сразу двух потенциометров, конструктивно объединённых. Один из потенциометров имеет прямую выходную характеристику, а другой потенциометр обычно имеет инверсную выходную характеристику. Кроме того, многие узлы дроссельных заслонок со встроенным электроприводом зачастую дополнительно оснащены концевым микро-выключателем холостого хода, срабатывающим тогда, когда педаль акселератора отпущена водителем полностью.  

  Осциллограммы напряжения выходных сигналов исправного спаренного датчика положения дроссельной заслонки системы управления двигателем с электронным приводом дроссельной заслонки. Зажигание включено, двигатель остановлен, открытие дроссельной заслонки, закрытие дроссельной заслонки. 

сигнала потенциометра, имеющего

  1. Осциллограмма напряжения выходного инверсную выходную характеристику. 
  2. Осциллограмма напряжения выходного сигнала потенциометра, имеющего прямую выходную характеристику.

 

  1. A: Значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению выходного сигнала потенциометра, имеющего инверсную выходную характеристику при закрытой дроссельной заслонке и равно ~4 V.
  2. A: Значение напряжения в момент времени указанный маркером. В данномслучае соответствует напряжению выходного сигнала потенциометра, имеющего прямую выходную характеристику при закрытой дроссельной заслонке и равно ~890 mV.

Наличие двух потенциометров в датчике положения дроссельной заслонки служит для повышения точности измерения текущего положения дроссельной заслонки, для точного распознавания блоком управления неисправностей датчика, а так же для повышения надёжности узла дроссельной заслонки — при выходе из строя одного из потенциометров блок управления двигателем определяет текущее положение дроссельной заслонки по сигналу от исправного потенциометра.   Встречаются спаренные потенциометрические датчики положения дроссельной заслонки, где оба потенциометра имеют прямую выходную характеристику. Выходной сигнал одного потенциометра изменяется в диапазоне положений дроссельной заслонки от «полностью закрыто», до «частично открыто» (для системы управления двигателем BOSCH MONO Motronic этот диапазон составляет от 0% до 30%). Выходной сигнал другого потенциометра изменяется в диапазоне положений дроссельной заслонки от «частично открыто» до «полностью открыто» (для системы управления двигателем BOSCH MONO Motronic этот диапазон составляет от 17% до 100%).

Осциллограммы напряжения выходных сигналов исправного спаренного датчика положения дроссельной заслонки системы управления двигателем BOSCH MONO Motronic. Зажигание включено, двигатель остановлен, открытие дроссельной заслонки, закрытие дроссельной заслонки. 

  1. Осциллограмма напряжения выходного сигнала потенциометра, работающего в диапазоне положений дроссельной заслонки от «полностью закрыто», до «частично открыто».
  2. Осциллограмма напряжения выходного сигнала потенциометра, работающего в диапазоне положений дроссельной заслонки от «частично открыто» до «полностью открыто».

  Такая конструкция датчика применяется для повышения точности измерения текущего положения дроссельной заслонки при малых углах её открытия. Высокая точность измерения текущего положения дроссельной заслонки в системе управления двигателем BOSCH MONO Motronic очень важна, так как данная система не оснащена ни датчиком абсолютного давления во впускном коллекторе, ни датчиком расхода воздуха. По этому, величина нагрузки на двигатель и соответствующее ей необходимое количество впрыскиваемого топлива определяются по скорости вращения коленвала, по величине открытия дроссельной заслонки, по температуре двигателя и по температуре входящего воздуха.  

Типовые неисправности датчика положения дроссельной заслонки.

  Подвижный контакт потенциометрического датчика механически перемещается по контактному резистивному слою датчика, что со временем может стать причиной разрушения этого контактного резистивного слоя. В таком случае, при некоторых положениях подвижного контакта датчика, значение выходного напряжения датчика может не соответствовать фактическому положению дроссельной заслонки.  

Дорожка потенциометра с «протёртым» контактным резистивным слоем (на данной иллюстрации показан измерительный потенциометр датчика объёмного расхода воздуха).

Как только водитель устанавливает такое положение дроссельной заслонки, при котором ползунок потенциометра датчика заслонки попадает на участок с разрушенным контактным резистивным слоем, возникают резкие рывки в работе двигателя. Блок управления двигателем воспринимает изменения напряжения на дефектном участке как сигнал режима быстрого разгона двигателя, или режима отсечки подачи топлива. Характер влияния неисправности на работу системы управления двигателем зависит от того, на каких режимах работы двигателя, и при каких углах открытия дроссельной заслонки проявляется неисправность. Если показания датчика нарушаются при закрытой дроссельной заслонке, то это приводит к нестабильности оборотов холостого хода — после отпускания педали акселератора двигатель может заглохнуть, либо напротив, обороты холостого хода могут быть сильно завышенными. Если же показания датчика нарушаются при каком-либо другом положении дроссельной заслонки, это вызывает возникновение резких рывков в работе двигателя в моменты, когда дроссельная заслонка принимает положения, при которых проявляется несоответствие выходного сигнала датчика фактическому положению заслонки.

Осциллограмма напряжения выходного сигнала неисправного датчика положения дроссельной заслонки. Зажигание включено, двигатель остановлен, плавное открытие дроссельной заслонки, плавное закрытие дроссельной заслонки.

В большинстве случаев, несоответствие выходного сигнала датчика положения дроссельной заслонки фактическому углу открытия дроссельной заслонки имеет место при положении дроссельной заслонки «полностью закрыто» и «частично открыто», из-за чего нарушается работа двигателя в режиме холостого хода.

 

Осциллограмма напряжения выходного сигнала неисправного датчика дроссельной заслонки. Зажигание включено, двигатель остановлен, плавное положения открытие дроссельной заслонки.

В случае повреждения контактного резистивного слоя датчика во всём диапазоне положений дроссельной заслонки, характер работы двигателя становится непредсказуемым.   Неисправности датчика, вызванные разрушением контактного резистивного слоя датчика, устраняются путём замены датчика положения дроссельной заслонки на новый.   Другой типовой неисправностью датчика является повышенная зависимость выходного напряжения датчика от температуры его корпуса. Данная неисправность является следствием установки некачественного датчика положения дроссельной заслонки на этапе замены износившегося датчика на новый или ещё на этапе производства автомобиля. Проявляется данная неисправность после прогрева двигателя при полностью закрытой дроссельной заслонке как повышение частоты вращения двигателя на холостом ходу.   Характерным признаком неисправности является возможность временного её устранения путём выключения и повторного пуска двигателя. В момент включения зажигания, блок управления двигателем фиксирует («запоминает») текущее значение выходного напряжения датчика положения дроссельной заслонки и принимает его за напряжение, соответствующее полностью закрытой заслонке. После запуска двигателя это значение напряжения служит для блока управления двигателем признаком закрытой дроссельной заслонки, когда водитель полностью отпускает педаль акселератора. При совпадении выходного напряжения датчика со значением, зафиксированным во время включения зажигания, блок управления двигателем переходит в режим стабилизации частоты вращения двигателя на холостом ходу.дроссельной заслонки, когда водитель полностью отпускает педаль акселератора. При совпадении выходного напряжения датчика со значением, зафиксированным во время включения зажигания, блок управления двигателем переходит в режим стабилизации частоты вращения двигателя на холостом ходу.   Если температурная стабильность датчика не удовлетворительна, может возникнуть сбой в работе двигателя на холостом ходу. Например, в момент включения зажигания, когда двигатель холодный (корпус датчика положения дроссельной заслонки холодный) значение выходного напряжения рассматриваемого датчика равно 500 mV. Блок управления двигателем фиксирует это значение как соответствующее полностью закрытой дроссельной заслонке. В моменты, когда выходное напряжение датчика вновь совпадает с этим зафиксированным значением 500 mV, двигатель переходит в режим стабилизации оборотов холостого хода. По мере прогрева двигателя разогревается и корпус датчика, и если с увеличением температуры корпуса датчика его выходное напряжение так же увеличивается, то может наступить момент, когда при закрытой дроссельной заслонке напряжение выходного сигнала будет значительно превышать зафиксированное при включении зажигания значение, и будет равно, например, 550 mV. В таком случае, когда водитель полностью отпускает педаль акселератора, от датчика будет поступать напряжение 550 mV вместо 500 mV, что уже не будет соответствовать сигналу полностью закрытой дроссельной заслонки. Вследствие этого, блок управления двигателем уже не будет переходить в режим стабилизации оборотов холостого хода.   Если же теперь водитель выключит зажигание, после чего вновь запустит двигатель, блок управления двигателем зафиксирует новое текущее значение напряжения датчика положения дроссельной заслонки 550 mV с уже разогретым корпусом и примет его за напряжение, соответствующее полностью закрытой дроссельной заслонки. Теперь, работа двигателя при закрытой дроссельной заслонке будет стабильна, пока температура корпуса датчика положения дроссельной заслонки вновь не измениться.   Диагностика данной неисправности сводится к сравнению двух значений выходного напряжения датчика при полностью закрытой дроссельной заслонке. Первое значение необходимо измерить, когда температура корпуса датчика близка к текущему значению температуры воздуха (двигатель не работал на протяжении минимум 3-х часов). Второе значение необходимо измерить, когда двигатель будет полностью прогрет до рабочей температуры (электро-вентилятор системы охлаждения автоматически включится не менее трёх раз). Данная неисправность устраняется только путём замены некачественного датчика на качественный.   В некоторых системах управления двигателем вместо датчиков положения потенциометрического типа применяются оптические датчики положения. Типовой неисправностью этих датчиков является проникновение и накопление загрязнений в полостях, где расположены оптические элементы и на самих оптических элементах. Устраняется данная неисправность путём очистки от загрязнений, но только в тех случаях, если конструкция датчика позволяет его разобрать и повторно собрать.   В последнее время, в некоторых системах управления двигателем вместо датчиков положения потенциометрического типа применяются бесконтактные «линейные» датчики, работающие на эффекте Холла. Эти датчики лишены недостатков резистивного слоя, но при этом имеют «свои» типовые неисправности. Наиболее распространённым дефектом датчика положения дроссельной заслонки на эффекте Холла бывают зоны с нелинейной зависимостью изменения выходного напряжения датчика. На осциллограмме напряжения выходного сигнала при плавном открытии дроссельной заслонки данная неисправность проявляется как «Г-образная ступенька». Такая «ступенька» может перекрывать значительный диапазон возможных положений дроссельной заслонки. При плавном изменении положения дроссельной заслонки внутри такого диапазона значения напряжения выходного сигнала датчика не изменяются. Подобных ступенек на всём диапазоне возможных положений дроссельной заслонки может быть несколько.  

Осциллограмма напряжения выходного сигнала неисправного датчика положения дроссельной заслонки работающего на эффекте Холла.

  Устраняется данная неисправность только путём замены датчика на исправный.  

Датчик крайних положений дроссельной заслонки Throttle Valve Switch.

В некоторых системах управления двигателем прежних лет применялись датчики крайних положений дроссельной заслонки на основе концевых микро-выключателей. Микро-выключатель «холостого хода» и микро-выключатель «полной нагрузки».  

Датчик крайних положений дроссельной заслонки, измерительными элементами которого являются два микро-выключателя.

Каждый из концевых микро-выключателей может принимать одно из двух его возможных состояний — «замкнут» или «разомкнут». В зависимости от текущего состояния микро-выключателя, напряжение его выходного сигнала может принимать значение соответствующее либо низкому уровню сигнала (обычно это значение равно 0 V), либо соответствующее высокому уровню сигнала (обычно это значение равно 5 V, либо 12 V). Вследствие сравнительно быстрого механического износа, микро-выключатели датчика со временем могут перестать срабатывать, особенно часто данная неисправность случается с микро-выключателями холостого хода. Для устранения этого дефекта достаточно периодически вновь отрегулировать положение корпуса датчика относительно корпуса дроссельной заслонки так, чтобы микро-выключатель холостого хода изменял своё состояние сразу же после начала открытия дроссельной заслонки.   Ещё одной распространённой неисправностью концевых микро-выключателей датчиков положения некоторых типов является образование микротрещин в области спайки выходных клемм выключателя с разъёмом датчика. Эта неисправность возникает на автомобилях со значительным пробегом, вследствие воздействия механических нагрузок в области спайки клемм выключателя с разъёмом датчика. Если конструкция датчика позволяет его разобрать и повторно собрать, эту неисправность можно устранить, не прибегая к замене датчика. Достаточно повторно пропаять при помощи паяльника выходные клеммы микро-выключателя в области спаивания с разъёмом датчика.   Проверка исправности концевого микро-выключателя проводится путём измерения сопротивления датчика с помощью омметра. Сопротивление разомкнутого микровыключателя должно стремиться к бесконечности. Когда микро-выключатель замкнут, его сопротивление не должно превышать значения 1 Q. При этом дополнительно следует обратить внимание на стабильность сопротивления микро-выключателя в состоянии «замкнут» при нескольких его срабатываниях. После каждого переключения выключателя в состояние «замкнут» омметр должен показывать одно и то же значение сопротивления датчика с отклонениями не более 0,1 Q. Изменяющиеся значения сопротивления микровыключателя в состоянии «замкнут» могут быть признаком образования микротрещин в области спаивания выходных клемм выключателя с разъёмом датчика, либо признаком подгорания контактов датчика.   Существуют датчики крайних положений дроссельной заслонки, выполненные по технологии, аналогичной технологии изготовления потенциометрических датчиков положения дроссельной заслонки — на основе резистивного слоя. Сопротивление такого датчика при его состоянии «замкнуто» может принимать значения от 0,1 Q до 10 kQ и более. Подобные датчики часто бывают конструктивно объединены в общем корпусе с датчиком положения дроссельной заслонки потенциометрического типа.  

Датчик положения дроссельной заслонки потенциометрического типа со встроенным датчиком концевого положения, срабатывающим в положении заслонки «полностью закрыто».

Подобные датчики имеют обычно 4-х контактный разъём. Три клеммы разъёма соединены с датчиком положения дроссельной заслонки потенциометрического типа, четвёртая клемма разъёма соединяется с выводом датчика концевого положения дроссельной заслонки. Другой вывод датчика концевого положения дроссельной заслонки соединён с одной из питающих клемм датчика, обычно, с выводом «массы» датчика.

auto-master.su

🚘 Диагностика датчика положения дроссельной заслонки

Рывки, резкое колебание или зависание на одной отметке стрелки тахометра, нестабильность холостого хода и периодически самопроизвольно глохнущий двигатель. Такие симптомы могут указывать на выход из строя датчика положения дроссельной заслонки. Нередко в этом случае на панели приборов загорается символ Check Engine, свидетельствующий о регистрации соответствующей ошибки контроллером.

Проверка цепи датчика положения дроссельной заслонки

Часто бывает, что сам датчик находится в исправном состоянии, а ошибка Р0122 (низкий уровень сигнала в цепи ДПДЗ) является свидетельством неполадок в проводке или повреждения контактов. Выявить истинную причину поможет вольтметр. Для проверки цепи необходимо отсоединить колодку проводов от ДПДЗ, после чего замерить напряжение между контактами А и B штекера. Оно должно быть равным 4,8–5,2 В.

В том случае, если напряжение отсутствует, следует «прозвонить» проводку от вывода 32 электронного блока управления до контакта А штекера и от вывода 17 до вывода В. Отсутствие контакта говорит о замыкании или обрыве соответствующего провода, а его наличие при отсутствии нормативного напряжения – о неисправности контроллера.

Диагностика ДПДЗ

Самый простой способ проверки ДПДЗ – замена его на гарантированно рабочий. Впрочем, если исправного датчика под рукой нет, зато есть мультиметр, вполне можно определить, в нем ли вообще проблема. Тем более что снимать сам датчик для этого не нужно. Понадобятся лишь два тонких провода или иглы, которые надо вставить в колодку снаружи через отверстия для проводов.

Объективная проверка датчика может быть произведена путем замера напряжения на выводах В и C при включенном зажигании и различном положении дроссельной заслонки. Изменять последнее можно как путем нажатия на педаль газа (в нажатом положении ее можно зафиксировать грузом), так и вручную. При полностью открытой заслонке напряжение должно находиться в диапазоне 0,35–0,7 В, а при полностью открытой – 4,05–4,75 В. Если показания вольтметра отличаются от указанных, ДПДЗ нуждается в замене.

Спасибо за подписку!

При проверке также целесообразно проверить, насколько точно работает потенциометр датчика и насколько свободно перемещается заслонка. Поворот последней должен осуществляться легко и без заеданий, а значение напряжения на выходе датчика изменяться пропорционально углу, на который перемещается заслонка.

Наиболее простым способом проверки датчика положения дроссельной заслонки в Калине будет его замена на аналогичный, но гарантированно рабочий. Диагностику ДПДЗ также можно произвести при помощи мультиметра, работающего в режиме вольтметра. Измерив напряжение на выводах (предварительно следует проверить исправность проводки и убедиться в целостности контактов) датчика при полностью открытой, полностью закрытой заслонке и в промежуточных положениях, можно сделать вывод о необходимости его замены.

olade.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *