Датчик холла как проверить в ноутбуке: Датчик холла в ноутбуке как проверить

Содержание

Датчик холла в ноутбуке как проверить

Начало статьи читайте в первой части.

Во второй части инструкции начинаем с восстановления участка цепи.

Для этого нужно выпаять датчик, который отвечает за сигнал открытия/закрытия крышки, и резистор в цепи этого датчика. Резистор отпал сам, значит, он подлежит замене. У датчика одна из ножек отгнила, поэтому нужен более подробный осмотр на предмет возможности восстановить ее.

Прочищаем контактные площадки спиртом и щеточкой.

Потом очищаем место от флюса и проверяем, в каком состоянии находятся дорожки. Для этого можно воспользоваться увеличительным устройством.

Дорожки оказались в нормальном состоянии.

Теперь обращаемся к схеме, чтобы узнать номинал стоявшего резистора. По этим характеристикам подберем новый, заведомо исправный, резистор и запаяем на его место.

На схеме находим необходимые нам элементы по их позиционному обозначению – MR5 и R444.

Данный резистор стоит в цепи сигнала LID591. Данный сигнал является сигналом открытия/закрытия крышки ноутбука. Датчик холла MR5 реагирует на магнитное поле, которое создает магнит, спрятанный в крышке ноутбука.

Обрыв нашего резистора подтяжки R444 может препятствовать тому, чтобы появлялся высокий уровень сигнала на выводе LID591.

Номинал резистора, как мы видим на схеме, составляет 100 кОм. Находим резистор такого же номинала и впаиваем на место старого. Мы, как обычно, воспользуемся платой-донором. Если у вас такой нет, придется покупать резистор.

После установки резистора и датчика не забываем очистить место пайки.

При проверке микроскопом одной из дорожек около светодиодов обнаружили, что она прогнила. Ее придется зачистить чем-нибудь острым, а также флюсом и паяльником.

Перегнившую дорожку восстановим при помощи тонкой проволочной перемычки.

Укладываем проволочку вдоль линии дорожки, соединив рабочие участки дорожки между собой, и минуя поврежденный участок.

Припаиваем концы проволоки, затем очищаем участок пайки от флюса и других остатков.

При ремонте следующего участка также отпал резистор. Значит, снова придется обратиться к схеме. Позиционное обозначение резистора – PR109.

Данный резистор участвует в формировании сигнала S5D. То есть, когда этот резистор отгнил, сигнал S5D стал только низкого логического уровня. Потому что положительное напряжение на данный сигнал подается через этот резистор.

Этот сигнал через перемычку подается на затвор транзистора PQ21. Транзистор коммутирует напряжение +3V_S5.

Это напряжение получается из напряжения +3VCPU при открытии данного транзистора. Чтобы транзистор открылся, на его затвор необходимо подать высокий логический уровень.

Соответственно, транзистор откроется, когда наше напряжение S5D будет высокого логического уровня.

Узнаем, что это за напряжения +3VCPU и +3V_S5. На каком этапе они формируются.

Напряжение +3VCPU – это дежурное напряжение, которое всегда должно присутствовать на плате. Напряжение +3V_S5 появляется позже, когда плата в S5 режим.

Переходим к восстановлению участка платы. Первым делом восстанавливаем прогнивший участок дорожки.

Алгоритм действий знаком: зачищаем острым предметом, смазываем флюсом, проходим паяльником несколько раз, прокладываем между рабочими участками дорожки проволочку в качестве мостика, припаиваем ее, отрезаем лишнее и очищаем участок ремонта.

Затем устанавливаем новый резистор.

Теперь переходим к следующему проблемному участку – резистору R735 и транзистору Q56.

Отпаиваем их. Очищаем контактные площадки.

Затем снова обращаемся к схеме.

Эта цепь отвечает за индикацию подключения адаптера питания. В запуске материнской платы данная цепь не участвует.

Резистор здесь на 1.5 кОм. Найдем новый резистор с такими характеристиками и впаяем его на место старого.

Выпаянный транзистор оказался рабочим, поэтому мы его вернем на родное подготовленное место.

После восстановления не забываем очистить место пайки.

Восстановив все видимые повреждения, пробуем подать питание на плату и посмотреть, появится ли реакция на кнопку включения.

В нашем случае реакции на кнопку запуска не появилось. В таком случае откроем последовательность запуска и смотреть, что мешает нормальному старту платы.

Начало статьи читайте в первой части.

Во второй части инструкции начинаем с восстановления участка цепи.

Для этого нужно выпаять датчик, который отвечает за сигнал открытия/закрытия крышки, и резистор в цепи этого датчика. Резистор отпал сам, значит, он подлежит замене. У датчика одна из ножек отгнила, поэтому нужен более подробный осмотр на предмет возможности восстановить ее.

Прочищаем контактные площадки спиртом и щеточкой.

Потом очищаем место от флюса и проверяем, в каком состоянии находятся дорожки. Для этого можно воспользоваться увеличительным устройством.

Дорожки оказались в нормальном состоянии.

Теперь обращаемся к схеме, чтобы узнать номинал стоявшего резистора. По этим характеристикам подберем новый, заведомо исправный, резистор и запаяем на его место.

На схеме находим необходимые нам элементы по их позиционному обозначению – MR5 и R444.

Данный резистор стоит в цепи сигнала LID591. Данный сигнал является сигналом открытия/закрытия крышки ноутбука. Датчик холла MR5 реагирует на магнитное поле, которое создает магнит, спрятанный в крышке ноутбука.

Обрыв нашего резистора подтяжки R444 может препятствовать тому, чтобы появлялся высокий уровень сигнала на выводе LID591.

Номинал резистора, как мы видим на схеме, составляет 100 кОм. Находим резистор такого же номинала и впаиваем на место старого. Мы, как обычно, воспользуемся платой-донором. Если у вас такой нет, придется покупать резистор.

После установки резистора и датчика не забываем очистить место пайки.

При проверке микроскопом одной из дорожек около светодиодов обнаружили, что она прогнила.

Ее придется зачистить чем-нибудь острым, а также флюсом и паяльником.

Перегнившую дорожку восстановим при помощи тонкой проволочной перемычки.

Укладываем проволочку вдоль линии дорожки, соединив рабочие участки дорожки между собой, и минуя поврежденный участок.

Припаиваем концы проволоки, затем очищаем участок пайки от флюса и других остатков.

При ремонте следующего участка также отпал резистор. Значит, снова придется обратиться к схеме. Позиционное обозначение резистора – PR109.

Данный резистор участвует в формировании сигнала S5D. То есть, когда этот резистор отгнил, сигнал S5D стал только низкого логического уровня. Потому что положительное напряжение на данный сигнал подается через этот резистор.

Этот сигнал через перемычку подается на затвор транзистора PQ21. Транзистор коммутирует напряжение +3V_S5.

Это напряжение получается из напряжения +3VCPU при открытии данного транзистора. Чтобы транзистор открылся, на его затвор необходимо подать высокий логический уровень.

Соответственно, транзистор откроется, когда наше напряжение S5D будет высокого логического уровня.

Узнаем, что это за напряжения +3VCPU и +3V_S5. На каком этапе они формируются.

Напряжение +3VCPU – это дежурное напряжение, которое всегда должно присутствовать на плате. Напряжение +3V_S5 появляется позже, когда плата в S5 режим.

Переходим к восстановлению участка платы. Первым делом восстанавливаем прогнивший участок дорожки.

Алгоритм действий знаком: зачищаем острым предметом, смазываем флюсом, проходим паяльником несколько раз, прокладываем между рабочими участками дорожки проволочку в качестве мостика, припаиваем ее, отрезаем лишнее и очищаем участок ремонта.

Затем устанавливаем новый резистор.

Теперь переходим к следующему проблемному участку – резистору R735 и транзистору Q56.

Отпаиваем их. Очищаем контактные площадки.

Затем снова обращаемся к схеме.

Эта цепь отвечает за индикацию подключения адаптера питания. В запуске материнской платы данная цепь не участвует.

Резистор здесь на 1.5 кОм. Найдем новый резистор с такими характеристиками и впаяем его на место старого.

Выпаянный транзистор оказался рабочим, поэтому мы его вернем на родное подготовленное место.

После восстановления не забываем очистить место пайки.

Восстановив все видимые повреждения, пробуем подать питание на плату и посмотреть, появится ли реакция на кнопку включения.

В нашем случае реакции на кнопку запуска не появилось. В таком случае откроем последовательность запуска и смотреть, что мешает нормальному старту платы.

Последние вопросы

Ноутбуки Packard Bell EasyNote TV11HC

EasyNote TV11HC. Суть проблемы – при закрытии крышки перехода в спящий режим не происходит. Но если сверху ещё чуть чуть надавить, то переходит в спящий режим. Можно просто посильнее закрыть крышки – опять же сработает. Думаю, что то не так, либо с датчиком закрытия крышки, либо с магнитом. Подскажите пожалуйста, где его искать?

Мульти Бренд Премиум сервис СПБ 19.09.2017 02:22

Для начала проверте целостность корпуса и петлей, так как при более сильном нажатии всё таки срабатывает.

Ремонт48 Липецк 18.09.2017 22:09

Нужно отрегулировать магнит или дело в деформированном корпусе.

Берёте маленький магнитик и проводите по периметру топ-панели в том месте где гаснет экран и устройство уходит в «сон» там и находится датчик хола как правило находится на левой части топ панели в районе клавиши Shift и Caps Lock (могу ошибаться) как правило перестаёт срабатывать после замены матрици если забыли установить магнит в крышку либо сместили его, ну и конечно же убедитесь, что корпус цел и петли закрываются полностью. (доброго вам времени суток и продолжительной работы вашему устройству)

Как проверить датчик холла в ноутбуке


Датчик Холла | Описание, предназначение, виды

Датчик дождя, датчик уровня жидкости, датчик температуры – он же термометр.

Вроде бы все ясно: датчик дождя показывает наличие дождя, датчик уровня жидкости показывает, как ни странно, уровень жидкости; термометр – от греч. – тепло и измерять, показывает температуру.  Но  вот что за странное название: датчик Холла?

С чего все начиналось

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странную вещь… Он взял пластинку золота и стал пропускать через неё постоянный ток.  На рисунке эту пластинку я отметил с гранями ABCD.

Так вот, когда он пропускал постоянный ток через грани D и B, поднес перпендикулярно пластинке постоянный магнит и знаете что обнаружил?  Разность потенциалов на гранях А и C!  Или проще сказать, напряжение. Этот эффект и назвали в честь этого ученого.

Как только он сделали это открытие, вскоре стали делать радиоэлементы на этом эффекте. Чтобы не заморачиваться с названием, назвали в честь того, кто открыл этот эффект  –  в честь Холла. Поэтому

радиоэлементы, основанные на эффекте Холла, называют датчиками Холла.  

Линейные датчики Холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку. Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого проводоа, например, токовые клещи

а также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах называют линейными, так как напряжение на датчике Холла прямо пропорционально измеряемым параметрам магнитного поля.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Разработчики на этом не остановились. Как только наступила  эра цифровой элек троники в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Выглядит все это примерно вот так:

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

[stextbox id=’info’]

Униполярные. Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. То есть подносим например южный полюс магнита, датчик сработал. На северный магнитный полюс ему наплевать.

Биполярные. Здесь уже интереснее. Подносим магнит одним полюсом – датчик сработал и продолжает работать даже тогда, когда мы убираем магнит от датчика.  Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Омниполярные. Этим датчикам по барабану на какой полюс включаться и выключаться. Пусть будет хоть южный или северный.

[/stextbox]

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

А вот здесь можно скачать даташит на этот датчик: (нажмите сюда). Итак, на первую ножку подаем плюс, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого давайте соберем простейшую схемку: простой светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и, конечно же, сам датчик Холла.

Теперь цепляемся к нашей схеме от Блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать северный и южный полюс.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу перестал гореть

Переворачиваю магнит другим полюсом и вуаля!

Если магнитик не переворачивать, то есть не менять полюса, то у нас светодиод также останется потухшим, потому как датчик у нас биполярный.

А вот и видео работы

Как вы видите на видео,  мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль. Поэтому датчики Холла с логическими элементами в одном корпусе очень полюбила цифровая электроника. Их можно подцепить к микроконтроллерам и другим логическим элементам.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков Холла
  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения
Применение цифровых датчиков Холла
  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)
Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически  датчика хватит на бесконечное число включений-выключений. Там нет электромеханического контакта, который бы изнашивался, в отличие от геркона  и электромагнитного реле. Используйте на здоровье датчики Холла в своих электронных устройствах.

www.ruselectronic.com

Ремонт ноутбука Toshiba Satellite L755d-11x. Часть 2. Замена датчиков, резисторов, транзисторов и восстановление дорожек

Начало статьи читайте в первой части.

Во второй части инструкции начинаем с восстановления участка цепи.

Для этого нужно выпаять датчик, который отвечает за сигнал открытия/закрытия крышки, и резистор в цепи этого датчика. Резистор отпал сам, значит, он подлежит замене. У датчика одна из ножек отгнила, поэтому нужен более подробный осмотр на предмет возможности восстановить ее.

Прочищаем контактные площадки спиртом и щеточкой.

Потом очищаем место от флюса и проверяем, в каком состоянии находятся дорожки. Для этого можно воспользоваться увеличительным устройством.

Дорожки оказались в нормальном состоянии.

Теперь обращаемся к схеме, чтобы узнать номинал стоявшего резистора. По этим характеристикам подберем новый, заведомо исправный, резистор и запаяем на его место.

На схеме находим необходимые нам элементы по их позиционному обозначению – MR5 и R444.

Данный резистор стоит в цепи сигнала LID591. Данный сигнал является сигналом открытия/закрытия крышки ноутбука. Датчик холла MR5 реагирует на магнитное поле, которое создает магнит, спрятанный в крышке ноутбука.

Обрыв нашего резистора подтяжки R444 может препятствовать тому, чтобы появлялся высокий уровень сигнала на выводе LID591.

Номинал резистора, как мы видим на схеме, составляет 100 кОм. Находим резистор такого же номинала и впаиваем на место старого. Мы, как обычно, воспользуемся платой-донором. Если у вас такой нет, придется покупать резистор.

После установки резистора и датчика не забываем очистить место пайки.

При проверке микроскопом одной из дорожек около светодиодов обнаружили, что она прогнила. Ее придется зачистить чем-нибудь острым, а также флюсом и паяльником.

Перегнившую дорожку восстановим при помощи тонкой проволочной перемычки.

Укладываем проволочку вдоль линии дорожки, соединив рабочие участки дорожки между собой, и минуя поврежденный участок.

Припаиваем концы проволоки, затем очищаем участок пайки от флюса и других остатков.

При ремонте следующего участка также отпал резистор. Значит, снова придется обратиться к схеме. Позиционное обозначение резистора – PR109.

Данный резистор участвует в формировании сигнала S5D. То есть, когда этот резистор отгнил, сигнал S5D стал только низкого логического уровня. Потому что положительное напряжение на данный сигнал подается через этот резистор.

Этот сигнал через перемычку подается на затвор транзистора PQ21. Транзистор коммутирует напряжение +3V_S5.

Это напряжение получается из напряжения +3VCPU при открытии данного транзистора. Чтобы транзистор открылся, на его затвор необходимо подать высокий логический уровень.

Соответственно, транзистор откроется, когда наше напряжение S5D будет высокого логического уровня.

Узнаем, что это за напряжения +3VCPU и +3V_S5. На каком этапе они формируются.

Напряжение +3VCPU – это дежурное напряжение, которое всегда должно присутствовать на плате. Напряжение +3V_S5 появляется позже, когда плата в S5 режим.

Переходим к восстановлению участка платы. Первым делом восстанавливаем прогнивший участок дорожки.

Алгоритм действий знаком: зачищаем острым предметом, смазываем флюсом, проходим паяльником несколько раз, прокладываем между рабочими участками дорожки проволочку в качестве мостика, припаиваем ее, отрезаем лишнее и очищаем участок ремонта.

Затем устанавливаем новый резистор.

Теперь переходим к следующему проблемному участку – резистору R735 и транзистору Q56.

Отпаиваем их. Очищаем контактные площадки.

Затем снова обращаемся к схеме.

Эта цепь отвечает за индикацию подключения адаптера питания. В запуске материнской платы данная цепь не участвует.

Резистор здесь на 1.5 кОм. Найдем новый резистор с такими характеристиками и впаяем его на место старого.

Выпаянный транзистор оказался рабочим, поэтому мы его вернем на родное подготовленное место.

После восстановления не забываем очистить место пайки.

 

Восстановив все видимые повреждения, пробуем подать питание на плату и посмотреть, появится ли реакция на кнопку включения.

В нашем случае реакции на кнопку запуска не появилось. В таком случае откроем последовательность запуска и смотреть, что мешает нормальному старту платы.

Ссылка на видеоинструкцию:

http://www.youtube.com/watch?v=7earGGNh5No

kom-servise.ru

Датчик холла в ноутбуке как проверить

Последние вопросы

Ноутбуки Packard Bell EasyNote TV11HC

EasyNote TV11HC. Суть проблемы — при закрытии крышки перехода в спящий режим не происходит. Но если сверху ещё чуть чуть надавить, то переходит в спящий режим. Можно просто посильнее закрыть крышки — опять же сработает. Думаю, что то не так, либо с датчиком закрытия крышки, либо с магнитом. Подскажите пожалуйста, где его искать?

Мульти Бренд Премиум сервис СПБ 19.09.2017 02:22

Для начала проверте целостность корпуса и петлей, так как при более сильном нажатии всё таки срабатывает.

Ремонт48 Липецк 18.09.2017 22:09

Нужно отрегулировать магнит или дело в деформированном корпусе.

Берёте маленький магнитик и проводите по периметру топ-панели в том месте где гаснет экран и устройство уходит в «сон» там и находится датчик хола как правило находится на левой части топ панели в районе клавиши Shift и Caps Lock (могу ошибаться) как правило перестаёт срабатывать после замены матрици если забыли установить магнит в крышку либо сместили его, ну и конечно же убедитесь, что корпус цел и петли закрываются полностью. (доброго вам времени суток и продолжительной работы вашему устройству)

Датчик дождя, датчик уровня жидкости, датчик температуры – он же термометр. Вроде бы все ясно: датчик дождя показывает наличие дождя, датчик уровня жидкости показывает, как ни странно, уровень жидкости; термометр – от греч. – тепло и измерять, показывает температуру. Но вот что за странное название: датчик Холла?

С чего все начиналось

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странную вещь… Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я отметил с гранями ABCD.

Так вот, когда он пропускал постоянный ток через грани D и B, поднес перпендикулярно пластинке постоянный магнит и знаете что обнаружил? Разность потенциалов на гранях А и C! Или проще сказать, напряжение. Этот эффект и назвали в честь этого ученого.

Как только он сделали это открытие, вскоре стали делать радиоэлементы на этом эффекте. Чтобы не заморачиваться с названием, назвали в честь того, кто открыл этот эффект – в честь Холла. Поэтому радиоэлементы, основанные на эффекте Холла, называют датчиками Холла.

Линейные датчики Холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку. Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого проводоа, например, токовые клещи

а также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах называют линейными, так как напряжение на датчике Холла прямо пропорционально измеряемым параметрам магнитного поля.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Разработчики на этом не остановились. Как только наступила эра цифровой элек троники в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Выглядит все это примерно вот так:

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные. Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. То есть подносим например южный полюс магнита, датчик сработал. На северный магнитный полюс ему наплевать.

Биполярные. Здесь уже интереснее. Подносим магнит одним полюсом – датчик сработал и продолжает работать даже тогда, когда мы убираем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Омниполярные. Этим датчикам по барабану на какой полюс включаться и выключаться. Пусть будет хоть южный или северный.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

А вот здесь можно скачать даташит на этот датчик: (нажмите сюда). Итак, на первую ножку подаем плюс, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого давайте соберем простейшую схемку: простой светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и, конечно же, сам датчик Холла.

Теперь цепляемся к нашей схеме от Блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать северный и южный полюс.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу перестал гореть

Переворачиваю магнит другим полюсом и вуаля!

Если магнитик не переворачивать, то есть не менять полюса, то у нас светодиод также останется потухшим, потому как датчик у нас биполярный.

А вот и видео работы

Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль. Поэтому датчики Холла с логическими элементами в одном корпусе очень полюбила цифровая электроника. Их можно подцепить к микроконтроллерам и другим логическим элементам.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков Холла
  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения
Применение цифровых датчиков Холла
  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)
Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически датчика хватит на бесконечное число включений-выключений. Там нет электромеханического контакта, который бы изнашивался, в отличие от геркона и электромагнитного реле. Используйте на здоровье датчики Холла в своих электронных устройствах.

Начало статьи читайте в первой части.

Во второй части инструкции начинаем с восстановления участка цепи.

Для этого нужно выпаять датчик, который отвечает за сигнал открытия/закрытия крышки, и резистор в цепи этого датчика. Резистор отпал сам, значит, он подлежит замене. У датчика одна из ножек отгнила, поэтому нужен более подробный осмотр на предмет возможности восстановить ее.

Прочищаем контактные площадки спиртом и щеточкой.

Потом очищаем место от флюса и проверяем, в каком состоянии находятся дорожки. Для этого можно воспользоваться увеличительным устройством.

Дорожки оказались в нормальном состоянии.

Теперь обращаемся к схеме, чтобы узнать номинал стоявшего резистора. По этим характеристикам подберем новый, заведомо исправный, резистор и запаяем на его место.

На схеме находим необходимые нам элементы по их позиционному обозначению – MR5 и R444.

Данный резистор стоит в цепи сигнала LID591. Данный сигнал является сигналом открытия/закрытия крышки ноутбука. Датчик холла MR5 реагирует на магнитное поле, которое создает магнит, спрятанный в крышке ноутбука.

Обрыв нашего резистора подтяжки R444 может препятствовать тому, чтобы появлялся высокий уровень сигнала на выводе LID591.

Номинал резистора, как мы видим на схеме, составляет 100 кОм. Находим резистор такого же номинала и впаиваем на место старого. Мы, как обычно, воспользуемся платой-донором. Если у вас такой нет, придется покупать резистор.

После установки резистора и датчика не забываем очистить место пайки.

При проверке микроскопом одной из дорожек около светодиодов обнаружили, что она прогнила. Ее придется зачистить чем-нибудь острым, а также флюсом и паяльником.

Перегнившую дорожку восстановим при помощи тонкой проволочной перемычки.

Укладываем проволочку вдоль линии дорожки, соединив рабочие участки дорожки между собой, и минуя поврежденный участок.

Припаиваем концы проволоки, затем очищаем участок пайки от флюса и других остатков.

При ремонте следующего участка также отпал резистор. Значит, снова придется обратиться к схеме. Позиционное обозначение резистора – PR109.

Данный резистор участвует в формировании сигнала S5D. То есть, когда этот резистор отгнил, сигнал S5D стал только низкого логического уровня. Потому что положительное напряжение на данный сигнал подается через этот резистор.

Этот сигнал через перемычку подается на затвор транзистора PQ21. Транзистор коммутирует напряжение +3V_S5.

Это напряжение получается из напряжения +3VCPU при открытии данного транзистора. Чтобы транзистор открылся, на его затвор необходимо подать высокий логический уровень.

Соответственно, транзистор откроется, когда наше напряжение S5D будет высокого логического уровня.

Узнаем, что это за напряжения +3VCPU и +3V_S5. На каком этапе они формируются.

Напряжение +3VCPU – это дежурное напряжение, которое всегда должно присутствовать на плате. Напряжение +3V_S5 появляется позже, когда плата в S5 режим.

Переходим к восстановлению участка платы. Первым делом восстанавливаем прогнивший участок дорожки.

Алгоритм действий знаком: зачищаем острым предметом, смазываем флюсом, проходим паяльником несколько раз, прокладываем между рабочими участками дорожки проволочку в качестве мостика, припаиваем ее, отрезаем лишнее и очищаем участок ремонта.

Затем устанавливаем новый резистор.

Теперь переходим к следующему проблемному участку – резистору R735 и транзистору Q56.

Отпаиваем их. Очищаем контактные площадки.

Затем снова обращаемся к схеме.

Эта цепь отвечает за индикацию подключения адаптера питания. В запуске материнской платы данная цепь не участвует.

Резистор здесь на 1. 5 кОм. Найдем новый резистор с такими характеристиками и впаяем его на место старого.

Выпаянный транзистор оказался рабочим, поэтому мы его вернем на родное подготовленное место.

После восстановления не забываем очистить место пайки.

Восстановив все видимые повреждения, пробуем подать питание на плату и посмотреть, появится ли реакция на кнопку включения.

В нашем случае реакции на кнопку запуска не появилось. В таком случае откроем последовательность запуска и смотреть, что мешает нормальному старту платы.

vmeste-masterim.ru

Датчик холла в ноутбуке как проверить. Ремонт ноутбука Toshiba Satellite L755d-11x. Часть 2. Замена датчиков, резисторов, транзисторов и восстановление дорожек


Как проверить датчик холла

Вопрос: Sony Vaio (VPCSB3V9R mbx-237) не реагирует на кнопку включения

Доброго времени суток!

При подключении зарядки, желтый диод загорается, напруга на батарейку идет. Не включается ни как, аккум+зарядка, просто ли зарядка или один аккум.

В течении нескольких дней перестал включатся, выходил из строя постепенно, день работал, день не включался. Если часто нажимать на включение, то можно поймать момент и ноут включится, правда потом отключится или если система стартанет, то уйдет в спящий режим и от туда, его можно достать только выдергиванием аккумулятора. Кнопки assets и web, так же ноут не включают. С электроникой знаком, но с ноутами не совсем.

Не могу понять с чего начать, не смотря на то, что прочитал пару статей о том, как стартует ноутбук. Нашел пару пробитых транзисторов, но думаю они не влияют на общий ход работы. Один на модуле питания, видимо отключает зарядку, второй идет на сидюк (как раз сидюк не работал).

Докопался до микросхемы SN0608098RHBR, пока непонятно как выявить неисправность. Не вижу последовательности действий. Есть идеи рыть вокруг кнопки включения, но думаю это пальцем в небо… кнопка рабочая.

Если есть возможность, подскажите, что нужно проверить?

За ранее благодарен.

Добавлено через 25 минутСейчас попробую проверить датчик холла.

Ответ: Есть вопрос по 6Pin шлейфу. Доп. плата отключена от материнки, мерим сопротивление на разъеме от земли на доп.плате сопротивление 125 кОм и растет. К доп. плате подключаю питание, мерю 19в на разъеме подключенному к материнке, относительно земли на доп.плате. Все остальные шлейфы отключены.

Добавлено через 5 минут

Сообщение от Compute

ЛБП и осцил есть?

Не лабараторный, но есть БП. Осцила нет. Теперь мерю сопротивления на концах W_F1. Отключены все шлейфы, кроме одного 80ти пинового.

Добавлено через 9 минутЕсли октлючить все шлейфы кроме 6ти пинового, при подключенном питании, 19в есть и без просадки.Теперь предохранитель. Относительно земли на доп плате, смотрю сопротивление. Справа 73 кОма и растет, слева 167 кОм и растет, если смотреть на плату как она на фото выше.

Добавлено через 6 минутуточнение: Справа 80 кОма, слева 164 кОм (емкостное и там и там), если смотреть на плату как она на фото выше.

еще есть два транзистора 6С, один в цепи подзарядки сильно подсевший, другой возле микросхемы PQ725 сгоревший.

forundex.ru

Датчик Холла > Практическая электроника

Датчик дождя, датчик уровня жидкости, датчик температуры — он же термометр. Вроде бы все ясно: датчик дождя показывает наличие дождя, датчик уровня жидкости — показывает, как ни странно, уровень жидкости; термометр — от греч. — тепло и измерять, показывает температуру.  Но  вот что за странное название: датчик Холла?

 

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил странную вещь… Он взял пластинку золота и стал пропускать через неё постоянный ток.  На рисунке эту пластинку я отметил с гранями ABCD.

Так вот, когда он пропускал постоянный ток через грани D и B, и поднес перпендикулярно пластинке постоянный магнит, знаете что он обнаружил?  Разность потенциалов на гранях А и C!  Или проще сказать, напряжение, измеряемое в Вольтах ;-). Этот эффект и назвали в честь этого ученого.

Как только чухнули эту фишку, стали делать радиоэлементы с этим эффектом. Чтобы не заморачиваться с названием, назвали в честь того, кто открыл этот эффект  —  в честь Холла. Поэтому радиоэлементы, основанные на эффекте Холла, называют датчиками Холла. 

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку. Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, например, токоизмерительные клещи, не касаясь самого провода, а также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики холла, используемые в этих приборах называют линейными, так как напряжение Холла прямо пропорционально измеряемым параметрам.

Разработчики на этом не остановились. Как только наступила  эра цифровой элек троники в один корпус вместе с датчиком холла стали помещать различные логические элементы. В результате промышленность стала выпускать датчики холла для цифровой электроники. В основном такие датчики делятся на три вида:

— Униполярные. Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. То есть подносим например южный полюс магнита, датчик сработал. На северный магнитный полюс ему наплевать.

— Биполярные. Здесь уже интереснее. Подносим магнит одним полюсом — датчик сработал и продолжает работать даже тогда, когда мы убираем магнит от датчика.  Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

— Омниполярные. Этим датчикам по барабану на какой полюс включаться и выключаться. Пусть будет хоть южный или северный.

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

А вот здесь можно скачать даташит на этот датчик: (нажмите сюда). Итак, на первую ножку подаем плюс, на вторую — минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого давайте соберем простейшую схемку: простой светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и, конечно же, сам датчик Холла.

Теперь цепляемся к нашей схеме от Блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс — на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил бумажным ценником один из полюсов магнита. Какой именно — я не знаю, так как не имею компаса, с помощью которого можно было бы узнать северный и южный полюс.

Как только я поднес магнитик «красным» полюсом к датчику холла, то у меня светодиодик сразу перестал гореть

Переворачиваю магнитик другим полюсом и вуаля!

Если магнитик не переворачивать, то есть не менять полюса, то у нас светодиод также останется потухшим, потому как датчик у нас биполярный.

А вот и видос:

Как вы видите на видео,  мы с помощью магнитика управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть — единичка, сигнала нет — ноль. То есть светодиод горит — единичка, светод

avtomotostyle.ru

принцип работы, как проверить своими руками, применение

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.
Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.
Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ
  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

www.asutpp.ru

Как проверить датчик холла

Вопрос: Sony Vaio (VPCSB3V9R mbx-237) не реагирует на кнопку включения


Доброго времени суток!

При подключении зарядки, желтый диод загорается, напруга на батарейку идет. Не включается ни как, аккум+зарядка, просто ли зарядка или один аккум.

В течении нескольких дней перестал включатся, выходил из строя постепенно, день работал, день не включался. Если часто нажимать на включение, то можно поймать момент и ноут включится, правда потом отключится или если система стартанет, то уйдет в спящий режим и от туда, его можно достать только выдергиванием аккумулятора.
Кнопки assets и web, так же ноут не включают. С электроникой знаком, но с ноутами не совсем.

Не могу понять с чего начать, не смотря на то, что прочитал пару статей о том, как стартует ноутбук. Нашел пару пробитых транзисторов, но думаю они не влияют на общий ход работы. Один на модуле питания, видимо отключает зарядку, второй идет на сидюк (как раз сидюк не работал).

Докопался до микросхемы SN0608098RHBR, пока непонятно как выявить неисправность. Не вижу последовательности действий. Есть идеи рыть вокруг кнопки включения, но думаю это пальцем в небо… кнопка рабочая.

Если есть возможность, подскажите, что нужно проверить?

За ранее благодарен.

Добавлено через 25 минут
Сейчас попробую проверить датчик холла.

Ответ: Есть вопрос по 6Pin шлейфу. Доп. плата отключена от материнки, мерим сопротивление на разъеме от земли на доп.плате сопротивление 125 кОм и растет.
К доп. плате подключаю питание, мерю 19в на разъеме подключенному к материнке, относительно земли на доп.плате. Все остальные шлейфы отключены.

Добавлено через 5 минут

Сообщение от Compute

ЛБП и осцил есть?

Не лабараторный, но есть БП. Осцила нет.
Теперь мерю сопротивления на концах W_F1. Отключены все шлейфы, кроме одного 80ти пинового.

Добавлено через 9 минут
Если октлючить все шлейфы кроме 6ти пинового, при подключенном питании, 19в есть и без просадки.
Теперь предохранитель. Относительно земли на доп плате, смотрю сопротивление. Справа 73 кОма и растет, слева 167 кОм и растет, если смотреть на плату как она на фото выше.

Добавлено через 6 минут
уточнение: Справа 80 кОма, слева 164 кОм (емкостное и там и там), если смотреть на плату как она на фото выше.

еще есть два транзистора 6С, один в цепи подзарядки сильно подсевший, другой возле микросхемы PQ725 сгоревший.

forundex.ru

🚘 Как проверить датчик Холла мультиметром (тестером) или осциллографом

Принцип работы датчика Холла

Датчик Холла – это устройство, которое фиксирует изменения в электромагнитном поле. Фактически – это выключатель, который срабатывает в моменты появления магнитного поля возле него и вся суть его работы в автомобиле сводиться к получению данных о положении коленвала и распредвалов для своевременной подачи топливовоздушной смеси в цилиндр и её воспламенения. Последствием выхода такого датчика из строя является полная остановка двигателя, поскольку система управления двигателем «не знает» в каких положениях находятся поршни и клапана, а это чревато серьёзными последствиями.

В автомобилях Лада Веста принцип Холла используется в датчике фаз. Он располагается на шкиве впускного распредвала. В шкиве имеется прорезь, которая в момент прохождения мимо датчика меняет его потенциал до 0 вольт и передаёт эту информацию на блок управления двигателем. В этот момент поршень первого цилиндра находится в ВМТ в такте сжатия.

Как проверить датчик Холла ВАЗ

Утверждать о неисправности датчика Холла только лишь по остановке двигателя нет никакого смысла, поскольку к этому результату может привести множество других причин. Но, если вы имеете кабель диагностического разъёма и ноутбук (планшет) с установленным программным обеспечением, вы всегда сможете точно определить неисправность датчика по коду ошибки. P0340, P0342, P0343 – коды ошибок, связанные с работоспособностью датчика фаз. Если у вас нет возможности считать коды ошибок, то возникает вопрос, как проверить датчик Холла своими руками. На этот вопрос есть ряд ответов:

  • проверка датчика фаз мультиметром
  • проверка датчика фаз осциллографом
  • проверка датчика фаз светодиодом

Как видите, существует немало ответов на вопрос о том, как проверить датчик Холла на исправность — это даёт возможность выполнить диагностику в любых условиях. Рассмотрим более подробно информацию о том, как проверить датчик Холла прибором.

Проверка датчика Холла мультиметром

Проверка исправности датчика Холла мультиметром – самый популярный и простой метод диагностики этого элемента. Если у вас в дороге случилась неисправность, вы всегда можете при наличии мультиметра осуществить диагностику датчика фаз.

Для осуществления этого действия нужно настроить мультиметр на режим вольтметра и установить ограничение от нуля до пятнадцати Вольт. Далее необходимо включить четвёртую передачу и приподнять одно колесо автомобиля на домкрате. Подключив мультиметр к датчику и вращая колесо, следите за изменениями показателей мультиметра. Если датчик исправен, то при прохождении прорези шкива распредвала мимо него, напряжение будет кратковременно падать практически до отметки 0. При иных показателях или при полном отсутствии показателей датчик фаз можно считать неисправным. Таким образом, производится проверка датчика Холла тестером на автомобилях Лада Веста.

 Проверка датчика Холла осциллографом

Этот метод также можно использовать для такого действия, как диагностика датчика Холла. В отличие от предыдущего метода, осциллограф позволяет визуально увидеть график скачков напряжения. Видео на экране осциллографа даёт немного более ясную картину и может использоваться для проверки «умирающего» датчика — он может создавать временные перебои в работе двигателя и, при подключении к нему осциллографа у вас будет возможность сравнить работу датчика в нескольких циклах. Например, бывает такое, что датчик периодически не выдаёт достаточного напряжения, и осциллограф это наглядно продемонстрирует в виде разницы амплитуд.

Чтобы протестировать датчик фаз осциллографом, нужно установит автомобиль на подъёмник, подключить осциллограф, включить зажигание, запустить двигатель и включить первую передачу. Для более менее определённой картины достаточно будет наблюдать за показаниями в течение минуты.

Спасибо за подписку!

Проверка датчика Холла светодиодом

Как проверить датчик Холла без тестера? Вы можете выполнить проверку, воспользовавшись элементарным светодиодом. Метод не отображает числовые характеристики напряжения, но проверки с помощью светодиода достаточно для того чтобы убедиться в исправности или неисправности датчика фаз.

Для такой проверки достаточно подключить светодиод проводами к датчику фаз и сымитировать работу двигателя любым из методов, указанных выше. Если светодиод моргает с одинаковой периодичностью (один раз за полный такт работы первого поршня), то датчик исправен и не подлежит замене. Если же светодиод не моргает, то это говорит о неисправности датчика или неисправности светодиода (рекомендуется проверить светодиод перед использованием в качестве тестера).

Но при такой проверке есть одно «но»: если датчик фаз не выдаёт достаточного напряжения для получения системой управления двигателя сигнала, то диод всё равно будет моргать.

olade.ru

Датчик холла в ноутбуке как проверить

Начало статьи читайте в первой части.

Во второй части инструкции начинаем с восстановления участка цепи.

Для этого нужно выпаять датчик, который отвечает за сигнал открытия/закрытия крышки, и резистор в цепи этого датчика. Резистор отпал сам, значит, он подлежит замене. У датчика одна из ножек отгнила, поэтому нужен более подробный осмотр на предмет возможности восстановить ее.

Прочищаем контактные площадки спиртом и щеточкой.

Потом очищаем место от флюса и проверяем, в каком состоянии находятся дорожки. Для этого можно воспользоваться увеличительным устройством.

Дорожки оказались в нормальном состоянии.

Теперь обращаемся к схеме, чтобы узнать номинал стоявшего резистора. По этим характеристикам подберем новый, заведомо исправный, резистор и запаяем на его место.

На схеме находим необходимые нам элементы по их позиционному обозначению – MR5 и R444.

Данный резистор стоит в цепи сигнала LID591. Данный сигнал является сигналом открытия/закрытия крышки ноутбука. Датчик холла MR5 реагирует на магнитное поле, которое создает магнит, спрятанный в крышке ноутбука.

Обрыв нашего резистора подтяжки R444 может препятствовать тому, чтобы появлялся высокий уровень сигнала на выводе LID591.

Номинал резистора, как мы видим на схеме, составляет 100 кОм. Находим резистор такого же номинала и впаиваем на место старого. Мы, как обычно, воспользуемся платой-донором. Если у вас такой нет, придется покупать резистор.

После установки резистора и датчика не забываем очистить место пайки.

При проверке микроскопом одной из дорожек около светодиодов обнаружили, что она прогнила. Ее придется зачистить чем-нибудь острым, а также флюсом и паяльником.

Перегнившую дорожку восстановим при помощи тонкой проволочной перемычки.

Укладываем проволочку вдоль линии дорожки, соединив рабочие участки дорожки между собой, и минуя поврежденный участок.

Припаиваем концы проволоки, затем очищаем участок пайки от флюса и других остатков.

При ремонте следующего участка также отпал резистор. Значит, снова придется обратиться к схеме. Позиционное обозначение резистора – PR109.

Данный резистор участвует в формировании сигнала S5D. То есть, когда этот резистор отгнил, сигнал S5D стал только низкого логического уровня. Потому что положительное напряжение на данный сигнал подается через этот резистор.

Этот сигнал через перемычку подается на затвор транзистора PQ21. Транзистор коммутирует напряжение +3V_S5.

Это напряжение получается из напряжения +3VCPU при открытии данного транзистора. Чтобы транзистор открылся, на его затвор необходимо подать высокий логический уровень.

Соответственно, транзистор откроется, когда наше напряжение S5D будет высокого логического уровня.

Узнаем, что это за напряжения +3VCPU и +3V_S5. На каком этапе они формируются.

Напряжение +3VCPU – это дежурное напряжение, которое всегда должно присутствовать на плате. Напряжение +3V_S5 появляется позже, когда плата в S5 режим.

Переходим к восстановлению участка платы. Первым делом восстанавливаем прогнивший участок дорожки.

Алгоритм действий знаком: зачищаем острым предметом, смазываем флюсом, проходим паяльником несколько раз, прокладываем между рабочими участками дорожки проволочку в качестве мостика, припаиваем ее, отрезаем лишнее и очищаем участок ремонта.

Затем устанавливаем новый резистор.

Теперь переходим к следующему проблемному участку – резистору R735 и транзистору Q56.

Отпаиваем их. Очищаем контактные площадки.

Затем снова обращаемся к схеме.

Эта цепь отвечает за индикацию подключения адаптера питания. В запуске материнской платы данная цепь не участвует.

Резистор здесь на 1.5 кОм. Найдем новый резистор с такими характеристиками и впаяем его на место старого.

Выпаянный транзистор оказался рабочим, поэтому мы его вернем на родное подготовленное место.

После восстановления не забываем очистить место пайки.

Восстановив все видимые повреждения, пробуем подать питание на плату и посмотреть, появится ли реакция на кнопку включения.

В нашем случае реакции на кнопку запуска не появилось. В таком случае откроем последовательность запуска и смотреть, что мешает нормальному старту платы.

Начало статьи читайте в первой части.

Во второй части инструкции начинаем с восстановления участка цепи.

Для этого нужно выпаять датчик, который отвечает за сигнал открытия/закрытия крышки, и резистор в цепи этого датчика. Резистор отпал сам, значит, он подлежит замене. У датчика одна из ножек отгнила, поэтому нужен более подробный осмотр на предмет возможности восстановить ее.

Прочищаем контактные площадки спиртом и щеточкой.

Потом очищаем место от флюса и проверяем, в каком состоянии находятся дорожки. Для этого можно воспользоваться увеличительным устройством.

Дорожки оказались в нормальном состоянии.

Теперь обращаемся к схеме, чтобы узнать номинал стоявшего резистора. По этим характеристикам подберем новый, заведомо исправный, резистор и запаяем на его место.

На схеме находим необходимые нам элементы по их позиционному обозначению – MR5 и R444.

Данный резистор стоит в цепи сигнала LID591. Данный сигнал является сигналом открытия/закрытия крышки ноутбука. Датчик холла MR5 реагирует на магнитное поле, которое создает магнит, спрятанный в крышке ноутбука.

Обрыв нашего резистора подтяжки R444 может препятствовать тому, чтобы появлялся высокий уровень сигнала на выводе LID591.

Номинал резистора, как мы видим на схеме, составляет 100 кОм. Находим резистор такого же номинала и впаиваем на место старого. Мы, как обычно, воспользуемся платой-донором. Если у вас такой нет, придется покупать резистор.

После установки резистора и датчика не забываем очистить место пайки.

При проверке микроскопом одной из дорожек около светодиодов обнаружили, что она прогнила. Ее придется зачистить чем-нибудь острым, а также флюсом и паяльником.

Перегнившую дорожку восстановим при помощи тонкой проволочной перемычки.

Укладываем проволочку вдоль линии дорожки, соединив рабочие участки дорожки между собой, и минуя поврежденный участок.

Припаиваем концы проволоки, затем очищаем участок пайки от флюса и других остатков.

При ремонте следующего участка также отпал резистор. Значит, снова придется обратиться к схеме. Позиционное обозначение резистора – PR109.

Данный резистор участвует в формировании сигнала S5D. То есть, когда этот резистор отгнил, сигнал S5D стал только низкого логического уровня. Потому что положительное напряжение на данный сигнал подается через этот резистор.

Этот сигнал через перемычку подается на затвор транзистора PQ21. Транзистор коммутирует напряжение +3V_S5.

Это напряжение получается из напряжения +3VCPU при открытии данного транзистора. Чтобы транзистор открылся, на его затвор необходимо подать высокий логический уровень.

Соответственно, транзистор откроется, когда наше напряжение S5D будет высокого логического уровня.

Узнаем, что это за напряжения +3VCPU и +3V_S5. На каком этапе они формируются.

Напряжение +3VCPU – это дежурное напряжение, которое всегда должно присутствовать на плате. Напряжение +3V_S5 появляется позже, когда плата в S5 режим.

Переходим к восстановлению участка платы. Первым делом восстанавливаем прогнивший участок дорожки.

Алгоритм действий знаком: зачищаем острым предметом, смазываем флюсом, проходим паяльником несколько раз, прокладываем между рабочими участками дорожки проволочку в качестве мостика, припаиваем ее, отрезаем лишнее и очищаем участок ремонта.

Затем устанавливаем новый резистор.

Теперь переходим к следующему проблемному участку – резистору R735 и транзистору Q56.

Отпаиваем их. Очищаем контактные площадки.

Затем снова обращаемся к схеме.

Эта цепь отвечает за индикацию подключения адаптера питания. В запуске материнской платы данная цепь не участвует.

Резистор здесь на 1.5 кОм. Найдем новый резистор с такими характеристиками и впаяем его на место старого.

Выпаянный транзистор оказался рабочим, поэтому мы его вернем на родное подготовленное место.

После восстановления не забываем очистить место пайки.

Восстановив все видимые повреждения, пробуем подать питание на плату и посмотреть, появится ли реакция на кнопку включения.

В нашем случае реакции на кнопку запуска не появилось. В таком случае откроем последовательность запуска и смотреть, что мешает нормальному старту платы.

Последние вопросы

Ноутбуки Packard Bell EasyNote TV11HC

EasyNote TV11HC. Суть проблемы — при закрытии крышки перехода в спящий режим не происходит. Но если сверху ещё чуть чуть надавить, то переходит в спящий режим. Можно просто посильнее закрыть крышки — опять же сработает. Думаю, что то не так, либо с датчиком закрытия крышки, либо с магнитом. Подскажите пожалуйста, где его искать?

Мульти Бренд Премиум сервис СПБ 19.09.2017 02:22

Для начала проверте целостность корпуса и петлей, так как при более сильном нажатии всё таки срабатывает.

Ремонт48 Липецк 18.09.2017 22:09

Нужно отрегулировать магнит или дело в деформированном корпусе.

Берёте маленький магнитик и проводите по периметру топ-панели в том месте где гаснет экран и устройство уходит в «сон» там и находится датчик хола как правило находится на левой части топ панели в районе клавиши Shift и Caps Lock (могу ошибаться) как правило перестаёт срабатывать после замены матрици если забыли установить магнит в крышку либо сместили его, ну и конечно же убедитесь, что корпус цел и петли закрываются полностью. (доброго вам времени суток и продолжительной работы вашему устройству)

rg-gaming.ru

Датчик холла в ноутбуке как проверить

Последние вопросы

Ноутбуки Packard Bell EasyNote TV11HC

EasyNote TV11HC. Суть проблемы — при закрытии крышки перехода в спящий режим не происходит. Но если сверху ещё чуть чуть надавить, то переходит в спящий режим. Можно просто посильнее закрыть крышки — опять же сработает. Думаю, что то не так, либо с датчиком закрытия крышки, либо с магнитом. Подскажите пожалуйста, где его искать?

Мульти Бренд Премиум сервис СПБ 19.09.2017 02:22

Для начала проверте целостность корпуса и петлей, так как при более сильном нажатии всё таки срабатывает.

Ремонт48 Липецк 18.09.2017 22:09

Нужно отрегулировать магнит или дело в деформированном корпусе.

Берёте маленький магнитик и проводите по периметру топ-панели в том месте где гаснет экран и устройство уходит в «сон» там и находится датчик хола как правило находится на левой части топ панели в районе клавиши Shift и Caps Lock (могу ошибаться) как правило перестаёт срабатывать после замены матрици если забыли установить магнит в крышку либо сместили его, ну и конечно же убедитесь, что корпус цел и петли закрываются полностью. (доброго вам времени суток и продолжительной работы вашему устройству)

Датчик дождя, датчик уровня жидкости, датчик температуры – он же термометр. Вроде бы все ясно: датчик дождя показывает наличие дождя, датчик уровня жидкости показывает, как ни странно, уровень жидкости; термометр – от греч. – тепло и измерять, показывает температуру. Но вот что за странное название: датчик Холла?

С чего все начиналось

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странную вещь… Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я отметил с гранями ABCD.

Так вот, когда он пропускал постоянный ток через грани D и B, поднес перпендикулярно пластинке постоянный магнит и знаете что обнаружил? Разность потенциалов на гранях А и C! Или проще сказать, напряжение. Этот эффект и назвали в честь этого ученого.

Как только он сделали это открытие, вскоре стали делать радиоэлементы на этом эффекте. Чтобы не заморачиваться с названием, назвали в честь того, кто открыл этот эффект – в честь Холла. Поэтому радиоэлементы, основанные на эффекте Холла, называют датчиками Холла.

Линейные датчики Холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку. Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого проводоа, например, токовые клещи

а также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах называют линейными, так как напряжение на датчике Холла прямо пропорционально измеряемым параметрам магнитного поля.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Разработчики на этом не остановились. Как только наступила эра цифровой элек троники в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Выглядит все это примерно вот так:

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные. Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. То есть подносим например южный полюс магнита, датчик сработал. На северный магнитный полюс ему наплевать.

Биполярные. Здесь уже интереснее. Подносим магнит одним полюсом – датчик сработал и продолжает работать даже тогда, когда мы убираем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Омниполярные. Этим датчикам по барабану на какой полюс включаться и выключаться. Пусть будет хоть южный или северный.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

А вот здесь можно скачать даташит на этот датчик: (нажмите сюда). Итак, на первую ножку подаем плюс, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого давайте соберем простейшую схемку: простой светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и, конечно же, сам датчик Холла.

Теперь цепляемся к нашей схеме от Блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать северный и южный полюс.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу перестал гореть

Переворачиваю магнит другим полюсом и вуаля!

Если магнитик не переворачивать, то есть не менять полюса, то у нас светодиод также останется потухшим, потому как датчик у нас биполярный.

А вот и видео работы

Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль. Поэтому датчики Холла с логическими элементами в одном корпусе очень полюбила цифровая электроника. Их можно подцепить к микроконтроллерам и другим логическим элементам.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков Холла
  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения
Применение цифровых датчиков Холла
  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически датчика хватит на бесконечное число включений-выключений. Там нет электромеханического контакта, который бы изнашивался, в отличие от геркона и электромагнитного реле. Используйте на здоровье датчики Холла в своих электронных устройствах.

Начало статьи читайте в первой части.

Во второй части инструкции начинаем с восстановления участка цепи.

Для этого нужно выпаять датчик, который отвечает за сигнал открытия/закрытия крышки, и резистор в цепи этого датчика. Резистор отпал сам, значит, он подлежит замене. У датчика одна из ножек отгнила, поэтому нужен более подробный осмотр на предмет возможности восстановить ее.

Прочищаем контактные площадки спиртом и щеточкой.

Потом очищаем место от флюса и проверяем, в каком состоянии находятся дорожки. Для этого можно воспользоваться увеличительным устройством.

Дорожки оказались в нормальном состоянии.

Теперь обращаемся к схеме, чтобы узнать номинал стоявшего резистора. По этим характеристикам подберем новый, заведомо исправный, резистор и запаяем на его место.

На схеме находим необходимые нам элементы по их позиционному обозначению – MR5 и R444.

Данный резистор стоит в цепи сигнала LID591. Данный сигнал является сигналом открытия/закрытия крышки ноутбука. Датчик холла MR5 реагирует на магнитное поле, которое создает магнит, спрятанный в крышке ноутбука.

Обрыв нашего резистора подтяжки R444 может препятствовать тому, чтобы появлялся высокий уровень сигнала на выводе LID591.

Номинал резистора, как мы видим на схеме, составляет 100 кОм. Находим резистор такого же номинала и впаиваем на место старого. Мы, как обычно, воспользуемся платой-донором. Если у вас такой нет, придется покупать резистор.

После установки резистора и датчика не забываем очистить место пайки.

При проверке микроскопом одной из дорожек около светодиодов обнаружили, что она прогнила. Ее придется зачистить чем-нибудь острым, а также флюсом и паяльником.

Перегнившую дорожку восстановим при помощи тонкой проволочной перемычки.

Укладываем проволочку вдоль линии дорожки, соединив рабочие участки дорожки между собой, и минуя поврежденный участок.

Припаиваем концы проволоки, затем очищаем участок пайки от флюса и других остатков.

При ремонте следующего участка также отпал резистор. Значит, снова придется обратиться к схеме. Позиционное обозначение резистора – PR109.

Данный резистор участвует в формировании сигнала S5D. То есть, когда этот резистор отгнил, сигнал S5D стал только низкого логического уровня. Потому что положительное напряжение на данный сигнал подается через этот резистор.

Этот сигнал через перемычку подается на затвор транзистора PQ21. Транзистор коммутирует напряжение +3V_S5.

Это напряжение получается из напряжения +3VCPU при открытии данного транзистора. Чтобы транзистор открылся, на его затвор необходимо подать высокий логический уровень.

Соответственно, транзистор откроется, когда наше напряжение S5D будет высокого логического уровня.

Узнаем, что это за напряжения +3VCPU и +3V_S5. На каком этапе они формируются.

Напряжение +3VCPU – это дежурное напряжение, которое всегда должно присутствовать на плате. Напряжение +3V_S5 появляется позже, когда плата в S5 режим.

Переходим к восстановлению участка платы. Первым делом восстанавливаем прогнивший участок дорожки.

Алгоритм действий знаком: зачищаем острым предметом, смазываем флюсом, проходим паяльником несколько раз, прокладываем между рабочими участками дорожки проволочку в качестве мостика, припаиваем ее, отрезаем лишнее и очищаем участок ремонта.

Затем устанавливаем новый резистор.

Теперь переходим к следующему проблемному участку – резистору R735 и транзистору Q56.

Отпаиваем их. Очищаем контактные площадки.

Затем снова обращаемся к схеме.

Эта цепь отвечает за индикацию подключения адаптера питания. В запуске материнской платы данная цепь не участвует.

Резистор здесь на 1.5 кОм. Найдем новый резистор с такими характеристиками и впаяем его на место старого.

Выпаянный транзистор оказался рабочим, поэтому мы его вернем на родное подготовленное место.

После восстановления не забываем очистить место пайки.

Восстановив все видимые повреждения, пробуем подать питание на плату и посмотреть, появится ли реакция на кнопку включения.

В нашем случае реакции на кнопку запуска не появилось. В таком случае откроем последовательность запуска и смотреть, что мешает нормальному старту платы.

принцип работы, как проверить своими руками, применение

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.
Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.
https://www.youtube.com/watch?v=fmLs9WsKx3I

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.
Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ
  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

🚘 Как проверить датчик Холла мультиметром (тестером) или осциллографом

Принцип работы датчика Холла

Датчик Холла – это устройство, которое фиксирует изменения в электромагнитном поле. Фактически – это выключатель, который срабатывает в моменты появления магнитного поля возле него и вся суть его работы в автомобиле сводиться к получению данных о положении коленвала и распредвалов для своевременной подачи топливовоздушной смеси в цилиндр и её воспламенения. Последствием выхода такого датчика из строя является полная остановка двигателя, поскольку система управления двигателем «не знает» в каких положениях находятся поршни и клапана, а это чревато серьёзными последствиями.

В автомобилях Лада Веста принцип Холла используется в датчике фаз. Он располагается на шкиве впускного распредвала. В шкиве имеется прорезь, которая в момент прохождения мимо датчика меняет его потенциал до 0 вольт и передаёт эту информацию на блок управления двигателем. В этот момент поршень первого цилиндра находится в ВМТ в такте сжатия.

Как проверить датчик Холла ВАЗ

Утверждать о неисправности датчика Холла только лишь по остановке двигателя нет никакого смысла, поскольку к этому результату может привести множество других причин. Но, если вы имеете кабель диагностического разъёма и ноутбук (планшет) с установленным программным обеспечением, вы всегда сможете точно определить неисправность датчика по коду ошибки. P0340, P0342, P0343 – коды ошибок, связанные с работоспособностью датчика фаз. Если у вас нет возможности считать коды ошибок, то возникает вопрос, как проверить датчик Холла своими руками. На этот вопрос есть ряд ответов:

  • проверка датчика фаз мультиметром
  • проверка датчика фаз осциллографом
  • проверка датчика фаз светодиодом

Как видите, существует немало ответов на вопрос о том, как проверить датчик Холла на исправность — это даёт возможность выполнить диагностику в любых условиях. Рассмотрим более подробно информацию о том, как проверить датчик Холла прибором.

Проверка датчика Холла мультиметром

Проверка исправности датчика Холла мультиметром – самый популярный и простой метод диагностики этого элемента. Если у вас в дороге случилась неисправность, вы всегда можете при наличии мультиметра осуществить диагностику датчика фаз.

Для осуществления этого действия нужно настроить мультиметр на режим вольтметра и установить ограничение от нуля до пятнадцати Вольт. Далее необходимо включить четвёртую передачу и приподнять одно колесо автомобиля на домкрате. Подключив мультиметр к датчику и вращая колесо, следите за изменениями показателей мультиметра. Если датчик исправен, то при прохождении прорези шкива распредвала мимо него, напряжение будет кратковременно падать практически до отметки 0. При иных показателях или при полном отсутствии показателей датчик фаз можно считать неисправным. Таким образом, производится проверка датчика Холла тестером на автомобилях Лада Веста.

 Проверка датчика Холла осциллографом

Этот метод также можно использовать для такого действия, как диагностика датчика Холла. В отличие от предыдущего метода, осциллограф позволяет визуально увидеть график скачков напряжения. Видео на экране осциллографа даёт немного более ясную картину и может использоваться для проверки «умирающего» датчика — он может создавать временные перебои в работе двигателя и, при подключении к нему осциллографа у вас будет возможность сравнить работу датчика в нескольких циклах. Например, бывает такое, что датчик периодически не выдаёт достаточного напряжения, и осциллограф это наглядно продемонстрирует в виде разницы амплитуд.

Чтобы протестировать датчик фаз осциллографом, нужно установит автомобиль на подъёмник, подключить осциллограф, включить зажигание, запустить двигатель и включить первую передачу. Для более менее определённой картины достаточно будет наблюдать за показаниями в течение минуты.

Спасибо за подписку!

Проверка датчика Холла светодиодом

Как проверить датчик Холла без тестера? Вы можете выполнить проверку, воспользовавшись элементарным светодиодом. Метод не отображает числовые характеристики напряжения, но проверки с помощью светодиода достаточно для того чтобы убедиться в исправности или неисправности датчика фаз.

Для такой проверки достаточно подключить светодиод проводами к датчику фаз и сымитировать работу двигателя любым из методов, указанных выше. Если светодиод моргает с одинаковой периодичностью (один раз за полный такт работы первого поршня), то датчик исправен и не подлежит замене. Если же светодиод не моргает, то это говорит о неисправности датчика или неисправности светодиода (рекомендуется проверить светодиод перед использованием в качестве тестера).

Но при такой проверке есть одно «но»: если датчик фаз не выдаёт достаточного напряжения для получения системой управления двигателя сигнала, то диод всё равно будет моргать.

Плата с кнопкой включения, светодиодом и датчиком Холла для ноутбука ASUS K53

Всем привет.
Одна из причин ухода ноутбука в спящий режим, когда об этом никто не просит — вышедший из строя датчик Холла.
Обозревать особо нечего, но на случай, если у кого-то есть похожие проблемы с ноутбуком, возможно эта заметка и пригодится.

Страница заказанного товара уже недоступна, поэтому ссылка на другую, но судя по названиям магазинов (AKemy PC Parts Store и Akemy Motherboard Store) — продавец или сеть магазинов одна и та-же.

Заказал плату со шлейфом, но шлейф не пригодился, почему — будет понятно дальше. В моём заказе шлейф никак не менял цену товара, сейчас же это лишние 300р, но судя по фотографии сейчас шлейф хотя-бы правильной длинны.

Собственно, как проявилась неисправность?
В марте 2020 ноутбук при малейшем движении крышки начал валиться в спящий режим. Проблему с датчиком подтвердило отключение какого-либо действия при закрытии крышки. Собственно проблему в какой-то степени это решило, просто стал отправлять в спящий нажатием кнопки.
Дальше ситуация усугубилась, ложные срабатывания стали всё чаще, и хоть в спящий режим ноутбук не валиться, экран всё ещё моргает, как отключить такую реакцию на закрытую крышку я не нашёл.

В конце концов мне это надоело, заказал плату.

Внешне платы похожи. Есть только одно отличие — место, где к плате прилегает токопроводящая лента. На оригинальной плате присутствуют шарики припоя, на новой — просто полигон меди без паяльной маски.

Собственно причина, по которой я не стал менять шлейф — слишком длинный.

Плата меняется легко, один винт и один пластиковый зацеп. Не забудьте приклеить токопроводящую ленту к специальной области на плате.

Одно заметное отличие, которое проявило себя после сборки — слишком яркий и синюшный светодиод в кнопке, по сравнению со старым. Проблему решил кусочком белой изоленты между светодиодом и кнопкой.

Ну и собственно всё, проблема решена, экран не мигает, в спящий без спроса не валится, всё замечательно.

А тут нашлась и возможная причина выхода датчика из строя. На нём есть следы пайки. В 2012 году ноутбук упал на землю из-за порвавшегося ремня сумки, разошёлся корпус и перестал реагировать на закрытую крышку. Пришлось отдавать в сервис.

Возможно это как-то повлияло, что со временем датчик стал работать неадекватно.

По поводу перепайки самого датчика, мне не удалось найти датчиков с маркировкой X31C.
Наверное можно было бы использовать другой в таком-же корпусе или вообще приколхозить выводной, но экспериментировать не хотелось, поэтому поменял всю плату.

А на этом всё.

Почему не включается экран на ноутбуке?

Если у вас не включается экран на ноутбуке, то первым делом следует попробовать выполнить сброс аппаратных настроек. Если это не поможет, то придется искать другие причины неполадки, которые могут быть настолько серьезными, что без похода в сервисный центр обойтись не получится.

Сброс настроек

Аппаратный сброс настроек помогает в большинстве ситуаций, когда не работает экран. Чтобы его выполнить:

  1. Отключите от ноутбука зарядное устройство.
  2. Извлеките батарею из лэптопа.
  3. Удалите остаточный заряд и сбросьте аппаратные настройки, зажав кнопку питания на 20-25 секунд.
  4. Установите аккумулятор обратно в портативный компьютер и подключите зарядное устройство.

При появлении окна с выбором режима загрузки после некорректного выключения устройства выберите обычный запуск Windows.

Проверка дисплея ноутбука

Если после сброса аппаратных настроек на экране всё равно нет изображения, то попробуйте определить, какой компонент вышел из строя: видеокарта, матрица или другая часть дисплея. Поможет это сделать внешний монитор. Например, на сайте ASUS в разделе поддержки рекомендуется выполнить следующие действия:

  1. Подключите к ноутбуку внешний монитор, используя имеющийся интерфейс – HDMI или VGA.
  2. Включите лэптоп. С помощью сочетания Fn+F8 выберите трансляцию изображения через подключенный монитор.

Если на внешнем экране не появится изображение, то проблема кроется в работе видеокарты. Это актуально и для ноутбуков Lenovo, Acer и других производителей. Если же на мониторе картинка отображается, то следует дальше искать неполадку в дисплее ноутбука. Проверку следует проводить в том случае, если у ноутбука шумит вентилятор, светится индикатор или есть другие признаки включения лэптопа. Если ничего подобного нет, то, возможно, проблема не в дисплее – не работает весь ноутбук.

Сброс настроек BIOS

Если проблема возникла после изменения параметров BIOS, то можно попробовать откатить их к заводскому состоянию. С помощью клавиатуры сделать это будет проблематично, но реально. В BIOS есть горячие клавиши, отвечающие за выполнение определенных функций. Сброс настроек к заводскому состоянию обычно проводится клавишей F9.

Теоретически вы можете зайти в BIOS, нажав клавишу Delete, затем сбросить настройки (F9) и сохранить конфигурацию (F10). Но на практике велика вероятность пропустить нужный момент, поэтому разумнее будет сбросить настройки путем извлечения батарейки CMOS, в которой и хранятся параметры BIOS.

Главный недостаток этого способа – необходимость разбирать ноутбук. Зато вы будете уверенны, что настройки BIOS сброшены, и если причиной черного экрана были неверно выставленные параметры, то неполадка будет устранена.

Переустановка планки ОЗУ

Если проблема возникла после чистки ноутбука, то следует еще раз разобрать лэптоп и убедиться, что вы установили все модули правильно и подключили необходимые шлейфы. Поэтому для правильной разборки/сборки ноутбука рекомендуется использовать руководство от производителя – тогда вероятность возникновения ошибки заметно снижается.

В некоторых случаях решить проблему с отсутствием изображения на экране ноутбука помогает переустановка планки оперативной памяти. Особенно это актуально, если на клавиатуру лэптопа была пролита жидкость, или он длительное время находился во влажном помещении, после чего и возникла сбои в работе.

  1. Отключите зарядное устройство .Если на ноутбук была пролита жидкость, извлеките аккумулятор.
  2. Снимите крышку, которая защищает отсек с планками оперативной памяти. На некоторых моделях ноутбуков отдельной крышки нет, поэтому придется полностью снимать откручивать заднюю стенку лэптопа. Уточните этот момент в руководстве по разборке.
  3. Модуль крепится к материнской плате с помощью фиксаторов. Аккуратно отогните их, чтобы извлечь плату.
  4. Продуйте разъемы на материнской плате. Почистите контакты на плате от окисления, если найдете его следы.
  5. Установите плату на место. Вставлять модуль следует под углом 45 градусов. Убедитесь, что фиксаторы удерживают планку ОЗУ. Ориентируйтесь на звук затворов – щелчки помогут понять, что плата закреплена.

После сборки ноутбука снова попробуйте его включить. Если черный экран остается, хотя ноутбук включается и продолжает работать без изображения на дисплее, то обратитесь в сервисный центр. Возможны следующие причины неполадки:

  • Повреждение шлейфа дисплея.
  • Короткое замыкание клавиатуры.
  • Выход из строя инвертора.
  • Поломка лампы подсветки.

Эти неисправности вряд ли получится устранить самостоятельно, здесь требуется квалифицированная помощь с использованием специальных инструментов. Худшее, что может случиться с ноутбуком – выход из строя материнской платы. Но тогда он не будет подавать никаких признаков жизни. В любом случае, точную причину выявит диагностика в сервисном центре.

Проблемы при выходе из спящего режима

Если экран остается черным при выходе из спящего режима, то первым делом следует проверить драйверы видеокарты. Программное обеспечение должно быть последней версии и подходить системе. Скачать актуальные драйверы можно на сайте производителя ноутбука.

В некоторых случаях причиной неполадки является неправильная поддержка спящего режима Windows устройствами ввода. Выход из сна осуществляется с помощью тачпада (мыши) или клавиатуры. Если подключено внешнее устройство, то оно может блокировать пробуждение лэптопа. Чтобы исправить этот недостаток:

  1. Откройте диспетчер устройств. Раскройте раздел «Мыши» или «Клавиатуры», в зависимости от того, какое устройство блокирует пробуждение.
  2. Щелкните правой кнопкой по оборудованию и откройте свойства.
  3. Перейдите на вкладку «Управление электропитанием» и уберите отметку «Разрешить вывод компьютера из спящего режима».

Сохраните конфигурацию, нажав «ОК». Не запрещайте пробуждать ноутбук одновременно мыши и клавиатуре, иначе не сможете вывести компьютер из сна. Установите запрет на оба устройства по очереди, проверяя, есть ли положительный эффект.

Перегрев ноутбука

Если на ноутбуке гаснет экран во время работы, то, вероятнее всего, вы столкнулись с перегревом оборудования. В первую очередь следует проверить температуру видеокарты. Используйте для этого бесплатную утилиту Speccy.

Если вы видите, что у видеокарты слишком высокая температура (посмотреть максимально допустимое значение можно в спецификации на сайте производителя), то следует проверить систему охлаждения ноутбука. Иногда достаточно просто почистить систему охлаждения, но если мощности установленных кулеров не хватает, то попробуйте использовать охлаждающую подставку или установить более мощные вентиляторы.

Как работают датчики на эффекте Холла

Как работают датчики на эффекте Холла — Объясните, что материал Рекламное объявление

Криса Вудфорда. Последнее изменение: 13 августа 2020 г.

Измерить электричество очень просто — мы все знакомы с электрическими единицами, такими как вольт, ампер и ватт (и большинство из нас видели счетчики с подвижной катушкой в той или иной форме). Немного сложнее измерить магнетизм. Спросите больше всего люди, как измерить силу магнитного поля (невидимое область магнетизма, простирающаяся вокруг магнита) или единицы в какая напряженность поля измеряется (Вебер или тесла, в зависимости от того, как вы измеряете), и они не имеют ни малейшего понятия.

Но есть простой способ измерить магнетизм с помощью прибора. называется датчиком или зондом на эффекте Холла, который использует хитроумную наука, открытая в 1879 году американским физиком Эдвин Х. Холл (1855–1938). Работа Холла была гениальной и на много лет опередила свое время — на 20 лет до открытия электрона — и никто не знал, что с ним делать, пока спустя десятилетия не стали лучше разбираться в полупроводниках, таких как кремний. В наши дни Эдвин Холл был бы в восторге найти датчики, названные в его честь, используются во всех виды интересных способов.Давайте посмотрим поближе!

Фото: Магнитное испытательное оборудование, используемое для изучения эффекта Холла. Фото любезно предоставлено Брукхейвенской национальной лабораторией и Министерством энергетики США.

Что такое эффект Холла?

Работая вместе, электричество и магнетизм могут заставить вещи двигаться: электродвигатели, громкоговорители и наушники — лишь некоторые из незаменимых современные гаджеты, которые так работают. Отправить колеблющийся электрический ток через катушку из медного провода и (хотя вы этого не видите происходит) вы создадите временное магнитное поле вокруг катушки тоже.Поместите катушку рядом с большим постоянным магнитом и временным магнитное поле, создаваемое катушкой, будет либо притягивать, либо отталкивать магнитное поле от постоянного магнита. Если катушка свободна двигаться, он будет двигаться — либо к постоянному магниту, либо от него. В электродвигатель, катушка настроена так, что может вращаться на месте и поверните колесо; в громкоговорителях и наушники, катушка приклеена на кусок бумага, пластик или ткань, которая движется вперед и назад, чтобы выкачать звук.

Фото: вы не видите магнитное поле, но можете измерить его с помощью эффекта Холла.фото любезно предоставлено Wikimedia Commons.

Если электрический ток в фиксированном проводе сам притягивается магнитом, ток должен отводиться на одну сторону провода …

Эдвин Холл , 1879

Что, если поместить кусок токоведущего провода в магнитное поле, а провод? не может двигаться? То, что мы называем электричеством, обычно представляет собой поток заряженные частицы через кристаллические (обычные, твердые) материалы (либо отрицательно заряженные электроны изнутри атомов, либо иногда положительно заряженные «дырки» — зазоры там, где должны находиться электроны).Вообще говоря, если подцепить пластину из проводящего материала к батарее, электроны будут проходить через пластину по прямой линии. Как движущиеся электрические заряды, они также будут производить магнитное поле. Если вы поместите плиту между полюса постоянного магнита, электроны отклонятся в изогнутый путь, когда они движутся через материал, потому что их собственная магнитное поле будет взаимодействовать с полем постоянного магнита. (Для справки, то, что заставляет их отклоняться, называется Сила Лоренца, но нам не нужно здесь вдаваться во все детали.) Это означает, что одна сторона материала будет видеть больше электронов, чем другой, так что разность потенциалов (напряжение) появится на материал под прямым углом к ​​магнитному полю от постоянный магнит и ток. Это то, что физики называют эффектом Холла. Чем больше магнитное поле, тем больше отклоняются электроны; чем больше ток, тем больше электронов нужно отклонить. В любом случае, чем больше разность потенциалов (известная как напряжение Холла) будет.В другом словами, напряжение Холла пропорционально величине как электрического ток и магнитное поле. Все это имеет больше смысла в наша небольшая анимация ниже.

Как работает эффект Холла?

  1. Когда электрический ток течет через материал, электроны (показаны здесь синими пятнами) движутся через него практически по прямой линии.
  2. Поместите материал в магнитное поле, и электроны внутри него тоже будут в этом поле. На них действует сила (сила Лоренца) и заставляет отклоняться от их прямолинейного пути.
  3. Теперь, глядя сверху, электроны в этом примере будут изгибаться, как показано: с их точки зрения слева направо. Если на правой стороне материала (внизу на этом рисунке) больше электронов, чем на левой (вверху на этом снимке), между двумя сторонами будет разница в потенциале (напряжении), как показано зеленым линия со стрелками. Величина этого напряжения прямо пропорциональна величине электрического тока и напряженности магнитного поля.

Куда они идут?

Как определить, в каком направлении будут двигаться электроны? Вы можете определить направление силы Лоренца с помощью правила левой руки Флеминга (если вы сделаете поправку на обычный ток) или его правила правой руки (если вы этого не сделаете).

Иллюстрация: заряженные частицы, движущиеся в магнитном поле, испытывают силу (сила Лоренца), которая меняет свое направление, вызывая эффект Холла. Вы можете использовать правило левой руки Флеминга (правило двигателя), чтобы определить направление силы, если вы помните, что правило применяется к обычному току (поток положительных зарядов), а поле течет с севера на юг. В этом примере, если у нас есть поток электронов на страницу, обычный ток вытекает из страницы (так что это направление, в котором должен указывать ваш второй палец).Если поле течет слева направо (указательный палец), наш большой палец говорит нам, что электроны будут двигаться вверх.

Использование эффекта Холла

Вы можете обнаруживать и измерять все виды вещей с помощью эффекта Холла, используя то, что известно. как датчик или зонд на эффекте Холла. Эти термины иногда используются взаимозаменяемо, но, строго говоря, относятся к разным вещам:

  • Датчики на эффекте Холла простые, недорогие, электронные чипы, которые используются во всевозможных широко доступных гаджетах и ​​товарах.
  • Зонды на эффекте Холла — более дорогие и сложные инструменты. в научных лабораториях для таких вещей, как измерение напряженности магнитного поля с очень высокой точностью.


Фото: 1) Типичный кремниевый датчик Холла. Это выглядит очень похоже на транзистор — что неудивительно, поскольку он сделан аналогичным образом. Автор фото: Expainthatstuff.com. 2) Зонд на эффекте Холла, использовавшийся НАСА в середине 1960-х годов. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).

Обычно изготавливается из полупроводников (таких материалов, как кремний и германий), эффект Холла датчики работают, измеряя напряжение Холла на двух сторонах когда вы помещаете их в магнитное поле. Некоторые датчики Холла упакованы в удобные микросхемы со схемой управления и могут быть подключается непосредственно к более крупным электронным схемам. Самый простой способ использование одного из этих устройств позволяет определить положение чего-либо. Для Например, вы можете разместить датчик Холла на дверной коробке и магнит на двери, поэтому датчик определяет, открыта дверь или закрыта от наличия магнитного поля.Такое устройство называется датчик приближения. Конечно, вы можете выполнять ту же работу так же легко с магнитным герконом (нет общего правила относительно того, герконовые переключатели старого образца или современные датчики на эффекте Холла лучше — это зависит от приложения). В отличие от герконов, которые являются механическими и полагаются на контакты движущиеся в магнитном поле датчики Холла полностью электронные и не имеют движущихся частей, поэтому (по крайней мере теоретически) они должны быть надежнее. Одна вещь, которую вы не можете сделать с герконом, — это определить степень «включения» — силу магнетизма, — потому что геркон либо включен, либо выключен.Вот что делает датчик на эффекте Холла таким полезным.

Рекламные ссылки

Для чего используются датчики на эффекте Холла?

Фото: Этот небольшой бесщеточный двигатель постоянного тока из старого дисковода для гибких дисков имеет три датчика Холла. (обозначены красными кружками), расположенные по его краю, которые обнаруживают движение ротора двигателя (вращающегося постоянного магнита) над ними (не показано на этой фотографии). На датчики особо не на что смотреть, как вы можете видеть на фото крупным планом справа!

Датчики на эффекте Холла

дешевы, прочные и надежные, крошечные и простые в использовании. так что вы найдете их во множестве разных машин и повседневных устройств, от автомобильных зажиганий до компьютерных клавиатур и заводских роботов до велотренажеров

Вот один очень распространенный пример, который вы сейчас можете использовать на своем компьютере.В бесщеточный двигатель постоянного тока (используется в таких устройствах, как жесткие и гибкие диски), вам необходимо в любой момент точно определить, где находится двигатель. Датчик Холла расположенный рядом с ротором (вращающаяся часть двигателя) сможет очень точно определить его ориентацию, измеряя вариации магнитное поле. Подобные датчики также можно использовать для измерения скорости. (например, чтобы посчитать, насколько быстро колесо или двигатель автомобиля кулачок или коленчатый вал вращается). Вы часто найдете их в электронных спидометрах и анемометры (измерители скорости ветра), где они могут быть использованы аналогично герконовым переключателям.

Революционное открытие Эдвина Холла прижилось за несколько десятилетий, но теперь оно используется в самых разных местах — даже в электромагнитных космических ракетных двигателях. Без преувеличения можно сказать, что новаторская работа Холла произвела на меня большое впечатление!

Изображение: Как упакован типичный датчик Холла. Магнитные поля могут быть очень маленькими, поэтому нам нужно, чтобы наши детекторы были как можно более чувствительными, и вот один из способов добиться этого. Сам чип Холла (зеленый, 17) установлен на железной несущей пластине (серый, 16), зажатой внутри двух формованных пластиковых секций (серый, 11, 12).Микросхема подключена выводами (19) к контактам (синим), с помощью которых ее можно подключить в цепь. Но действительно важными частями являются два «концентратора потока» из мягкого железа (оранжевый, 15, 21), которые делают устройство намного более чувствительным. Когда вы помещаете магнит (22) рядом с датчиком, эти концентраторы позволяют магнитному потоку («плотность» магнетизма, создаваемого магнитным полем) течь по непрерывной петле через кристалл Холла, создавая либо положительное, либо отрицательное напряжение. Если магнит переместится на другую сторону датчика, он создаст противоположное напряжение.Иллюстрация из патента США № 3 845 445: Модульное устройство на эффекте Холла Роланда Брауна и др., Корпорация IBM, 29 октября 1974 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Рекламные ссылки

Узнать больше

На этом сайте

Статьи

История
  • [PDF] Открытие эффекта Холла Г.С. Лидстоуном, Physics Education, Volume 14, 1979. Как Холл открыл свой эффект и выяснил, что он означает, бросив вызов некоторым из более ранних работ Джеймса Клерка Максвелла.
Статьи Эдвина Холла
  • О новом действии магнита на электрические токи. Эдвин Х. Холл, Американский журнал математики, Vol. 2, No. 3 (сентябрь 1879 г.), стр. 287–292. Оригинальная статья Холла.
  • Объяснение феномена Холла Эдвином Х. Холлом, Наука, Vol. 3, No. 60 (28 марта 1884 г.), стр. 386–387. Собственное описание и объяснение Холла своего первоначального эксперимента.
  • Теория эффекта Холла и связанного с ним эффекта для нескольких металлов Эдвина Х.Холл, PNAS США, Vol. 9, No. 2 (15 февраля 1923 г.), стр. 41–46. Одна из более поздних работ Холла.

Книги

  • Датчики на эффекте Холла: теория и применение Эдварда Рамсдена. Newnes, 2006. Охватывает физику, лежащую в основе датчиков Холла, и способы их включения в практические схемы. Включает в себя датчики приближения, датчики тока и датчики скорости и времени. Также есть удобный глоссарий и список поставщиков.
  • Устройства на эффекте Холла Р. С. Поповича. Институт физики, 2004.Несколько более крупная и подробная книга, но охватывающая схожую тему с смесью теории, практических схем и повседневных приложений.
  • Эффект Холла в металлах и сплавах Колина Херда. Springer 1972/2012. Современное переиздание вступления 1970-х годов.

Практические проекты

Видео

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2009/2020) Датчики на эффекте Холла. Получено с https://www.explainthatstuff.com/hall-effect-sensors.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Практические датчики: эффект Холла

Измерение магнитного поля может быть очень простым с помощью довольно простых технологий, а может быть и очень высокотехнологичным. Это просто зависит от того, какие измерения вам нужны и сколько усилий вы хотите затратить. Самыми простыми магнитными датчиками являются герконы. В основном это реле без катушки. Вместо катушки достаточно близко подходит внешний магнит, чтобы замкнуть или разорвать контакты в язычке.Вы часто видите это, например, в датчиках дверной сигнализации.

Опять же, тростник не изящен. Он меняет состояние, когда видит достаточное количество магнитного поля, и все. Вы можете использовать компас с каким-то датчиком на игле, чтобы получить дополнительную информацию о поле, но не более того. Однако именно так работали первые магнитометры. Сегодня у вас есть множество вариантов, включая почти повсеместный датчик на эффекте Холла.

Вы можете использовать эффект Холла для измерения магнитной кнопки на клавише клавиатуры, опускающейся при нажатии на нее, или открытого и закрытого состояния клапана.Многие эффекты Холла рассматривают сервис как текущие мониторы. Поскольку катушка генерирует магнитное поле, пропорциональное току, проходящему через нее, магнитный датчик может оценивать ток в катушке с проводом без какого-либо физического контакта. Эффекты Холла также позволяют наблюдать за движением магнита в системе линейного движения или во вращающейся системе, чтобы получить представление о положении или скорости. Например, посмотрите на этот бесщеточный контроллер двигателя, который использует три датчика для определения положения двигателя.

История

Эдвин Холл обнаружил эффект в 1879 году.Основная идея проста: электрический проводник, по которому проходит ток, будет демонстрировать изменения из-за расположенного поблизости внешнего магнитного поля. Эти изменения проявляются в измерении напряжения на проводнике. Обычно напряжение на проводнике будет почти нулевым, но с магнитным полем вы получите ненулевое значение, пропорциональное напряженности магнитного поля в определенной плоскости, как мы вскоре увидим.

Датчики на эффекте Холла — это всего лишь один из видов современных магнитометров. Существует много различных типов, в том числе те, в которых используются индукционные приемные катушки, которые могут вращаться, а могут и не вращаться, или магнитный датчик, который представляет собой особый тип катушки.Некоторые используют шкалу или пружину для измерения силы по отношению к другому магниту — иногда микроскопически. Вы даже можете обнаружить магнитное поле, используя оптические свойства, такие как эффект Керра или вращение Фарадея.

Тогда вы перейдете к действительно экзотическим датчикам. Вы также можете измерять протонный резонанс в богатых водородом материалах, таких как керосин, или определять энергетические состояния в газах, таких как цезий. Также в меню есть сверхпроводящие катушки.

Тем не менее, эффекты Холла, особенно в полупроводниках, дешевы и широко распространены.Они тоже маленькие. Трудно представить клавиатуру вашего ПК, использующую сверхпроводящую катушку, чтобы подбирать небольшие магниты, приклеенные к нижней части клавиш.

Как это работает?

Нам нравится видео из [rcmodelreviews], в котором рассказывается о теории, лежащей в основе эффекта Холла (см. Ниже). однако объяснение довольно простое даже без видео. Рассмотрим токопроводящий лист в форме долларовой банкноты. Между левой и правой сторонами подключен источник постоянного напряжения, заставляющий ток течь через проводник.Если вы измеряете напряжение — напряжение Холла — в верхней и нижней части банкноты, вы ожидаете, что напряжение будет почти нулевым, если проводник исправен. Без магнитного поля вы были бы правы. Напряжение сверху и снизу будет практически нулевым.

Однако, когда присутствует магнитное поле с силовыми линиями, расположенными под прямым углом к ​​току смещения, сила Лоренца действует на электроны — или другие носители заряда, такие как дырки, — и они отклоняются от силы, как вы можете видеть на эта анимация.Это приведет к тому, что электроны сгруппируются на одной стороне проводника и будут отсутствовать на другой стороне.

Анимация с эффектом Холла разработана [FraunhoferIIS], CC-BY-SA-4.0.

Это приводит к тому, что две стороны имеют разные заряды, и там, где у нас есть разность зарядов, у нас должно быть напряжение. На анимации вы можете увидеть батарею, обеспечивающую ток, и измеритель, измеряющий напряжение на эффекте Холла, когда подковообразный магнит прикладывает к устройству различные магнитные поля.

Практическое устройство будет иметь дополнительную схему. Обычно есть усилитель холловского напряжения. Иногда есть регулятор напряжения смещения. Цифровой выходной датчик может также иметь компаратор и выходной транзистор.

Чтение технического описания

Все устройства разные, поэтому стоит прочитать техническое описание того, которое вы хотите использовать. Эффекты Холла обычно имеют ограничения по частотному диапазону и могут быть довольно дорогими.Например, у Melexis есть устройство на 250 кГц, что намного быстрее, чем у многих других аналогичных продуктов. Это конкретное устройство требует для работы 5 В и менее 15 мА.

Из таблицы видно, что есть две версии. Один может работать с производительностью до 7,5 миллилител, а другой — около 20 миллитесла. Есть даже версия, которая может работать до 60 миллитесла. Конечно, есть много других вариантов от других поставщиков с другими параметрами.

Некоторые датчики выдают напряжение, пропорциональное измеренному магнитному полю, или вы можете получить датчик цифрового типа включения / выключения.Очевидно, что если вы планируете развернуть датчик, вам потребуется различная поддержка тех датчиков, которые вы решите использовать. В некоторых случаях вам даже не нужно внешнее устройство. Например, в ESP32 встроен собственный эффект Холла, как вы можете видеть в этом видео.

Здание с датчиками Холла

Если вы хотите создать свои собственные проекты с эффектом Холла, есть из чего выбрать. Портативный магнитометр довольно прост и находится в коробке Tic Tac. Если вы измеряете ток, вы можете использовать устройство, которое содержит не только датчик эффекта Холла, но и все остальное, что вам нужно.

Или почему бы не построить что-нибудь новое? Если вы это сделаете, обязательно отправьте нам сообщение о линии чаевых, чтобы мы могли рассказать о вашем последнем творении.

Что такое датчик Холла? — Аналоговый — Технические статьи

Датчик Холла, также известный как датчик Холла, отслеживает магнитные поля с высокой точностью, постоянством и надежностью. Почему это важно? Потому что это позволяет вам определять положение и движение объектов в системе. В этой статье я объясню, что такое датчик на эффекте Холла, его основные строительные блоки и функции, а также распространенные варианты использования датчиков Холла.

Датчик Холла не является типичной интегральной схемой (ИС), потому что, в отличие от большинства ИС, он косвенно взаимодействует со своей ключевой «схемой» — магнитом! Как показано на рисунке 1, элементарный датчик на эффекте Холла состоит из элемента Холла, который превращает магнитное поле в напряжение, и схемы обработки, такой как операционный усилитель. Схема как аналоговой, так и цифровой обработки критически важна для работы датчика Холла, потому что выходное напряжение элемента Холла крошечное — иногда в диапазоне микровольт.Один из простейших датчиков на эффекте Холла использует только трехконтактные корпуса, транзистор с малым контуром (SOT) -23 или контур транзистора (TO) -92, для источника питания, заземления и выхода.

Рисунок 1: Базовый датчик Холла

Магнитные поля никогда не бывают прямыми линиями, поскольку они простираются от одного полюса к другому, но на Рисунке 1 для простоты показаны прямые линии, падающие на датчик. Точное знание того, как эти векторы поля ведут себя в космосе, позволяет вам делать с ними много творческих вещей.Ознакомьтесь с примечаниями к применению на странице поддержки и обучения магнитных датчиков TI, где можно найти некоторые основные идеи.

Вы когда-нибудь задумывались о том, как работают датчики на эффекте Холла? Простой ответ заключается в том, что небольшое напряжение возникает на куске проводящего материала, вытесняя электроны в одну сторону, поскольку ток проталкивается через проводник и магнитное поле прикладывается в ортогональном направлении (см. Рисунок 2). Этот потенциал напряжения приписывается силе Лоренца, открытой Эдвином Холлом в 1879 году.

Рисунок 2: Эффект Холла

Обратите внимание на направление магнитного поля относительно элемента Холла? Это ключевой аспект датчика Холла, который необходимо учитывать при проектировании механической части.В большинстве таблиц данных датчиков Холла указывается ожидаемое направление магнитного поля относительно поверхности упаковки. В ассортименте датчиков Холла TI есть несколько вариантов.

Это фундаментальное понимание того, как работают датчики на эффекте Холла, необходимо для того, чтобы вы знали, как их эффективно использовать при правильном расположении относительно магнита. Но вам также необходимо знать, как магнитные поля, создаваемые магнитом, влияют на расстояние. На рисунке 3 показан простой график того, как магнитное поле затухает на расстоянии от магнита.

Рисунок 3: Распад магнитного поля на расстоянии

Чтобы максимизировать разрешение измерения, вам необходимо убедиться, что минимальные и максимальные значения расстояния системы находятся в пределах области с наибольшим изменением магнитного поля.

На сегодняшний день доступны три типа датчиков положения на эффекте Холла:

  • Переключатель на эффекте Холла — это цифровое устройство вывода, которое переключает состояния в зависимости от магнитного поля, которое он воспринимает. По мере приближения магнита к датчику магнитное поле, которое он воспринимает, становится сильнее и переключается в активное состояние, называемое B OP .Когда магнитное поле, которое оно ощущает, ослабевает (по мере того, как магнит отодвигается дальше), устройство переключается обратно в неактивное состояние на пороге, называемом B RP .
  • Защелка на эффекте Холла практически идентична переключателю, за исключением того, что она имеет точку B RP , противоположную по магнитной полярности. Другими словами, для переключения состояния выходного напряжения требуется переменная полярность магнитного поля.
  • Линейный датчик на эффекте Холла, также известный как линейный датчик, представляет собой аналоговое устройство, которое изменяет свое выходное напряжение пропорционально магнитному полю, которое он обнаруживает.В отсутствие магнитного поля устройство будет производить выходное напряжение, равное половине напряжения источника питания (V Q ). По мере усиления магнитного поля выходное напряжение будет либо приближать его к земле (магнитный север), либо приближаться к напряжению источника питания (магнитный юг), пока не достигнет точки насыщения. Датчик не будет измерять магнитные поля более сильные, чем те, которые достигаются при насыщении, из-за неизменного выходного напряжения. Коммутаторы и линейные устройства бывают однополярных версий (которые могут распознавать только северное или южное поля) или многополярных переключателей и биполярных линеаров (которые распознают как северные, так и южные поля).

На рис. 4 показаны соответствующие передаточные функции трех типов датчиков Холла.

Рисунок 4: Передаточные функции переключателя, защелки и линейного датчика

Магнитные точки B OP и B RP в переключателях и защелках определяют значение гистерезиса (B HYS = B OP — B RP ). Использование гистерезиса в вашей системе предотвратит переключение между выходными состояниями.

Общие приложения датчиков Холла

Переключатели

часто используются в портативных компьютерах, дверцах холодильников и оконечных переключателях для обнаружения приближения магнита к датчику. Защелки популярны в приложениях для кодирования вращения и коммутации двигателей, где вращательный аспект приложения созрел для постоянного контроля положения вращающегося вала. Линейные датчики могут точно измерять смещение объекта, поэтому они подходят для линейных приводов, триггеров переменной скорости и педалей ускорения.

Датчики

на эффекте Холла обеспечивают рентабельный способ наблюдения за движущимися объектами. В зависимости от области применения вы можете использовать переключатель, защелку или линейный датчик. Если вы хотите продолжить изучение датчиков на эффекте Холла, я рекомендую вам ознакомиться с нашей серией тренингов TI Precision Labs по магнитным датчикам.

Дополнительные ресурсы

Определение положения и уровня с использованием технологии измерения на эффекте Холла

Определение положения и уровня с использованием технологии измерения эффекта Холла

Скачать PDF версию

Гэри Пепка, Allegro MicroSystems, LLC

Абстрактные

Приложения для измерения эффекта Холла (магнитного поля) стали применяться в последнее время благодаря достижениям в поддерживающих технологиях.Эта статья знакомит с технологией эффекта Холла, а затем исследует, как она применялась, в частности, различая основные типы ИС датчиков Холла, а также сильно дифференцированный диапазон чувствительного поведения, которое они могут поддерживать. Кроме того, в нем исследуются некоторые вспомогательные технологии, такие как достижения в области обработки сигналов, которые сделали эту технологию намного более надежной, чем в ее первые дни. Это позволяет применять чрезвычайно высокую надежность бесконтактных приложений Холла в более широком диапазоне, чем когда-либо прежде.

Помимо усовершенствований в поддерживающих технологиях, были усовершенствованы сами устройства на эффекте Холла, которые вносят свой вклад в разработку законченных решений. Эти достижения включают сокращение мощности и пространства, а также интеграцию функций диагностики и защиты, которые позволяют ИС датчиков Холла предоставлять расширенные функции управления данными, которые становятся все более востребованными в миниатюрной портативной бытовой электронике, автомобилях и других растущих отраслях промышленности.

Введение

Благодаря большому разнообразию решений, доступных для определения положения и уровня, дизайнеры могут выбирать оптимальные технологии и пакеты для достижения своих коммерческих и технических целей.Из этих решений технология Холла с применением бесконтактного магнитного считывания обеспечивает исключительную ценность и надежность. В этой заметке по применению рассматриваются преимущества технологии Холла и то, как последние разработки в этих устройствах улучшают результаты определения положения и уровня.

Преимущества эффекта Холла

Средств определения положения и уровня может быть почти столько же, сколько приложений, требующих этих функций. Индуктивный, емкостной, механический, магниторезистивный, эффект Холла и оптический — это лишь некоторые из возможных вариантов измерения, и их список продолжает расширяться.Тем не менее, для проектировщика всегда остаются одни и те же критические элементы, которые необходимо решить и которые неизбежно сопоставляют требования приложения с соответствующей сенсорной технологией.

Критические требования, такие как: стоимость, расстояние перемещения (эффективный рабочий воздушный зазор), разрешение, точность и, зачастую, еще раз стоимость, все должны быть определены для эффективного и действенного выбора подходящей технологии измерения. Конечно, построение ответов для каждого из этих элементов не всегда является простой задачей.Однако здесь гибкость технологии измерения на эффекте Холла является наиболее выгодной. Высокая надежность, небольшие размеры, рентабельность производства, широкий диапазон рабочего напряжения, разнообразие вариантов вывода и простота реализации позволяют технологии измерения на эффекте Холла находить применение практически на всех рынках.

Обзор Hall Technology

Во-первых, краткое руководство о том, как работает технология Холла. Проще говоря, эффект Холла, названный так в честь сэра Эдвина Холла и открытый в 1879 году, относится к измеряемому напряжению на проводящем материале, например кремнии (Si) или арсениде галлия (GaAs), которое возникает, когда электрический ток течет через на проводник действует магнитное поле (см. рисунок 1).Эта поперечная сила, создаваемая магнитным полем, известна как сила Лоренца. Следовательно, устройству на эффекте Холла требуется магнитное поле для приведения в действие устройства.

Рис. 1. В эффекте Холла магнитный поток, перпендикулярный потоку электрического тока, дает измеримое напряжение.

Хотя сегодня технология Холла довольно распространена, она не стала получать массовое распространение до 1980-х годов. Это произошло из-за того, что потенциал напряжения на элементе Холла очень мал и может зависеть от внешних сил, таких как температура и напряжения корпуса.Как показано на рисунке 2, более современные устройства включают в себя усовершенствования в способности усиливать сигнал, в дополнение к использованию встроенных в микросхем методов подавления смещения, которые позволили использовать технологию измерения на эффекте Холла даже в экстремальных условиях окружающей среды. например, в автомобилях под капотом. Кроме того, «бесконтактная» работа интегральных схем на эффекте Холла дает пользователю почти бесконечную жизнь в отношении срабатывания и переключения.

Рисунок 2.Современные ИС датчиков на эффекте Холла объединяют методы преобразования и усиления сигналов для создания практических устройств.

Опции устройства Холла

Далее исследуя элементы, требующие рассмотрения для приложений измерения положения или уровня, ИС на эффекте Холла предоставляют разработчикам множество функций и вариантов, включая цифровой или аналоговый выход. Первый вариант оптимален для обнаружения дискретных положений, тогда как второй предоставляет пользователю относительно бесконечное количество положений для большего разрешения.Некоторыми примерами приложений, требующих дискретного определения положения или уровня, являются: автомобильные селекторы переключения передач, переключатели ремня безопасности, датчики положения сиденья, сотовые раскладные телефоны, бесщеточная коммутация двигателей постоянного тока, резервуары для жидкости стеклоочистителя и бензобаки, и это лишь некоторые из них. Из-за своей высокой надежности технология Холла используется для замены герконов и механических переключателей в этих приложениях.

Большинство переключателей на эффекте Холла имеют выходные структуры с открытым стоком и низким сопротивлением, что упрощает интерфейс для большинства микропроцессоров и другой цифровой электроники (пороговые компараторы, мультиплексоры, базовые вентили TTL и т. Д.).Типичный для выходов с открытым стоком, при включении выходное напряжение устройства на эффекте Холла переходит с высокого на низкое. При этом существует множество вариаций ИС на эффекте Холла для обслуживания множества приложений измерения положения и уровня, каждое из которых имеет свои нюансы. Эти варианты включают в себя такие функции, как: потребление микроэнергии, независимое от магнитных полюсов измерение, программируемые пользователем параметры, двухпроводные устройства вывода с источником тока, магнитное смещение для обнаружения железных целей и инвертированные выходы.Все это не может быть адекватно обсуждено за один присест, и в данной статье основное внимание будет уделено стандартным устройствам: их работе и приложениям.

Характеристики стандартного устройства Холла

Существует три распространенных варианта стандартных цифровых ИС датчиков положения и уровня: униполярный, с фиксацией и биполярный. В униполярных переключателях срабатывание вызывается магнитным полем достаточной силы, чтобы включить устройство. Обычно B юг (B указывает плотность магнитного потока) должен быть больше, чем точка срабатывания магнитного поля B OP устройства для включения этих устройств.Как только магнитное поле уменьшается ниже точки магнитного срабатывания B RP устройства, эти устройства возвращаются в состояние «выключено».

Блокировочные устройства включаются аналогично униполярным переключателям. Однако фиксирующие устройства можно выключить (разблокировать) только тогда, когда устройство обнаружит достаточную напряженность магнитного поля противоположной полярности, B север .

Биполярные переключатели похожи на устройства с фиксацией в том, что они используют противоположные магнитные полярности для включения и выключения.Но из-за высокой чувствительности этих устройств нельзя гарантировать их работу в качестве защелки. В некоторых случаях биполярные переключатели могут иметь точки переключения (B OP и B RP ), которые заставляют их работать как стандартный униполярный переключатель или даже как отрицательный переключатель (переключение только при наличии достаточной северной магнитной полярности).

Приложения с низким разрешением

Отличным примером приложения, в котором используется дискретное определение положения, является автомобильный селектор переключения передач.В селекторах переключения передач обычно всего пять дискретных положений (парковка, задний ход, нейтраль, движение и низкое положение). С униполярным переключателем, размещенным в каждом отдельном положении (P, R, N, D и L), каждый переключатель включается только тогда, когда магнит в переключателе перемещается непосредственно рядом с переключателем, как показано на рисунке 3.

Рис. 3. Устройства Холла можно использовать в качестве бесконтактных переключателей, согласовывать 1 к 1 с определенными положениями или группировать для обеспечения дополнительных положений срабатывания путем анализа магнитных перекрестных помех с использованием нескольких устройств.

Если проектировщику требуются дополнительные позиции, расстояние между устройствами можно уменьшить, чтобы создать перекрестные помехи между устройствами. Таким образом, дополнительные положения получаются, когда магнит находится достаточно близко к двум устройствам, так что оба они включены, тем самым увеличивая количество положений, например, с пяти до девяти. Простые двоично-десятичные системы (BCD) или более сложные системы, такие как код Грея или плотно упакованные десятичные числа (DPD), могут использоваться для декодирования логики и получения позиционной информации.

Подобным образом эту тактику можно использовать для определения уровней жидкости в резервуаре с помощью устройства флотации с магнитом внутри, как показано на рисунке 4. Когда магнит перемещается вверх и вниз с изменениями уровня жидкости, дискретные уровни определяются тем, какая микросхема датчика находится во включенном состоянии.

Рисунок 4. Датчик уровня в резервуаре с жидкостью; сферический поплавок с кнопочным магнитом внутри движется по поверхности жидкости, в то время как устройства Холла и проводка полностью изолированы в отдельной камере.

Приложения с высоким разрешением

Из примера с селектором переключения передач очень быстро видно, что дискретное определение положения или уровня идеально, когда требуется всего несколько положений. Этот метод добавления устройства для каждой позиции очень быстро становится дорогостоящим и проблематичным, когда приложение требует более высокого разрешения.

Вход в линейный прибор на эффекте Холла с аналоговым выходом. Как и в случае с цифровыми переключателями, линейные устройства имеют множество функций; например, логометрические выходы, возможность программирования пользователем, цифровые выходы (такие как ШИМ) и однонаправленное или двунаправленное измерение.Как и в предыдущем описании устройств для дискретных положений или уровней, это обсуждение будет сосредоточено только на стандартных ИС линейных датчиков Холла: их средствах работы и применениях.

Большинство стандартных ИС линейных датчиков Холла имеют логометрические выходы (0,5 × V DD ), которые реагируют пропорционально напряженности магнитного поля. Эти устройства обычно требуют регулируемого источника питания 5,0 В, а QVO (выходное напряжение покоя, V OUT (Q) ) составляет 2,5 В при отсутствии значительного магнитного поля (см. Рисунок 5).Выходное напряжение увеличивается при обнаружении увеличения магнитного поля от южного полюса магнита, приближаясь к 5,0 В. И наоборот, выходное напряжение будет уменьшаться при обнаружении увеличения магнитного поля от северного полюса магнита, приближаясь к 0 В.

Рис. 5. Устройства с линейным эффектом Холла реагируют во всем диапазоне измеренного магнитного потока, выдавая логометрический аналоговый сигнал.

Существуют две общие конфигурации для приложений линейных устройств, которые составляют основу большинства проектов.Эти методы называются «скользящим» и «лобовым».

Сдвижные конфигурации

В стандартном скользящем приложении магнит движется по лицевой стороне корпуса, так что элемент Холла воспринимает один или оба магнитных полюса, как показано на рисунке 6. Фактически может быть три положения, в которых выходное напряжение равно нулю. : (а) до того, как магнит окажется достаточно близко, чтобы поле было воспринято устройством, (б) когда точка пересечения нуля (B = 0) между полюсами окажется непосредственно рядом с элементом Холла, и (в) когда магнит прошел мимо устройства достаточно далеко, так что на элементе больше не обнаруживается достаточного поля.Фактически, изменение выходного напряжения составляет от 2,5 до 0 В (при условии, что V DD составляет 5 В), когда северный полюс магнитного поля проходит через поверхность корпуса, и от 2,5 до 5,0 В, когда проходит южный полюс. лицевая сторона пакета. Обычно это называют двунаправленным зондированием.

Рис. 6. Скользящая конфигурация приложения и кривая отклика, показывающая отдельные узлы для пиков на северном и южном полюсе.

Конечно, также можно ощутить изменение только одного полюса устройства, хотя это может ограничить доступный диапазон.Это называется однонаправленным измерением, когда изменение выходного сигнала ограничивается только 2,5 В для стандартных линейных датчиков. Чтобы получить полный рабочий диапазон, нужно использовать программируемую пользователем линейную систему с этой функцией. Изменение выходного напряжения ИС на эффекте Холла при изменении поля на поверхности затем можно использовать для определения относительного положения движущегося магнита. Затем можно использовать аналого-цифровой преобразователь на стандартном микропроцессоре и простую справочную таблицу для передачи фактического положения.В этой ситуации разрешение (количество позиций, которые могут быть обнаружены) зависит от разрешающей способности аналого-цифрового преобразователя, но аналоговый сигнал обеспечивает относительно бесконечное количество позиций.

Примером приложения, которое может использовать определение скольжения, является положение клапана, схематически изображенное на рисунке 7. В этом приложении часто магнит представляет собой двухполюсный кольцевой магнит, который вращается впереди (скользит лицевой стороной) эффекта Холла. упаковка. Когда противоположные магнитные поля проходят перед элементом, выходное напряжение изменяется пропорционально изменению напряженности поля.Посредством точного измерения положение клапана можно контролировать, чтобы более точно определять поток вещества через носитель.

Рис. 7. Определение положения клапана — проверенное приложение для скользящих конфигураций ИС Холла.

Лобовые конфигурации

Прямое определение положения очень похоже на однонаправленное определение в конфигурации скольжения. По сути, линейная ИС Холла различает изменение напряженности магнитного поля только для одного магнитного полюса, который может иметь северную или южную полярность.Схема обнаружения проста. По мере приближения магнита к устройству поле, обнаруживаемое ИС, увеличивается, а напряженность поля уменьшается по мере удаления магнита, как показано на рисунке 8.

Рис. 8. Конфигурация лобового приложения и кривая отклика, показывающая монотонную характеристику независимо от ориентации полюса.

Определение высоты деки на беговой дорожке хорошо иллюстрирует использование техники лобового зондирования. Когда высота деки изменяется для изменения наклона бегуна, линейная интегральная схема Холла может использоваться для обнаружения смещения деки.Обычно магнит прикреплен к самой деке, в то время как узел датчика остается неподвижным. Когда бегунок увеличивает или уменьшает уклон деки, IC датчика обеспечивает обратную связь с модулем управления относительно относительного смещения посредством изменения напряженности поля, наблюдаемого элементом Холла.

Определение характеристик поля

Как и в случае с любой другой технологией, при разработке приложения с использованием ИС датчика Холла следует учитывать некоторые особенности.Тщательный выбор магнита имеет первостепенное значение, включая форму и размещение, как показано на рисунке 9. Напряженность магнитного поля экспоненциально уменьшается с увеличением расстояния. Кроме того, магниты имеют температурные коэффициенты, которые необходимо учитывать.

Рис. 9. Эта модель изображает изменение напряженности поля для кнопочного магнита (аналогично тому, что используется на рис. 10). Стрелки представляют линии магнитного потока. Чем ближе линии к магниту, тем сильнее напряженность поля.

Поэтому для дискретного определения положения всегда рекомендуется определять эффективный воздушный зазор от лицевой стороны корпуса до магнита в требуемом положении переключения, а затем определять максимальную и минимальную напряженность поля в номинальном диапазоне температур. , на таком расстоянии. Затем это значение следует сравнить с максимальной номинальной рабочей точкой переключения для каждого альтернативного устройства.

Диаграмма и формула для оценки деградации поля за счет эффективного воздушного зазора представлены на рисунке 10.Это изменение можно рассчитать по следующей формуле:

где:

  • Br = остаточная магнитная индуктивность материала, в Гс,
  • L = длина магнита, мм,
  • X = расстояние между поверхностью магнита и устройством, мм, и
  • R = радиус магнита в мм.

На диаграмме отражены типичные результаты для магнита-пуговицы, аналогичного показанному на рисунке 9, состоящего из NdFe, номиналом 30 МОэ (эрстед; 1 Э = 100 микротесла, мкТл), с радиусом 2 мм и 1 мм толщина.

Хорошее практическое правило для проектировщика — убедиться, что в требуемом положении для переключения устройства напряженность поля по крайней мере на 10% больше, чем требуется при максимальной номинальной точке переключения. Например, если требуется, чтобы униполярный коммутатор с B OP (макс.) 50 G включился на определенном расстоянии, то напряженность поля на этом расстоянии должна быть не менее 55 G при любых условиях.

Разработка линейных приложений

В отличие от цифровых переключателей на эффекте Холла, для срабатывания которых требуется только определенная сила и полярность поля, линейным устройствам требуется немного больше технических характеристик для достижения удовлетворительных результатов.Коэффициент усиления линейной ИС определяет разрешение на заданном расстоянии. Следовательно, независимо от того, является ли приложение скользящим или прямым, необходимо выбрать соответствующее усиление.

Для этого должны быть установлены две известные конечные точки и требуемое разрешение (количество точек данных). Ниже приводится краткий пример определения соответствующего усиления.

Если предположить, что требования к приложению такие, как показано на рисунке 11, полезный линейный диапазон будет 3 В.Полный диапазон движения магнита по устройству составит 200 Гс (Гаусс; 10 Гс = 1 миллитесла, мТл). Разделив изменение выходного напряжения V OUT на изменение приложенного поля Bapplied, можно получить соответствующий коэффициент усиления линейного устройства на эффекте Холла для этого приложения.

Для большей наглядности, вот уравнения и результаты для этого примера. Общее уравнение:

Усиление (мВ / G) = V OUT (мВ) / B приложено (G) .

Чтобы использовать данные примера, сначала преобразуйте V OUT из В в мВ.

Тогда:

В ВЫХ = В В ВЫХ1

= 4000 мВ — 1000 мВ

= 3000 мВ (полный линейный диапазон),

и

B применяется (G) = B max — B min

= 100 Гс — (–100 Гс) = 200 Гс.

Примечание. Применяется алгебраическое соглашение: положительные значения для B обозначают южную полярность, а отрицательные значения для B обозначают северную полярность.

Вводя их в общее уравнение:

Усиление (мВ / G) = 3000 мВ / 200 G

= 15 мВ / Г.

Конечно, в реальных приложениях передаточные функции не являются идеально линейными, и в системе может быть внутреннее смещение. По этой причине необходимо дополнительно рассмотреть точность, требуемую приложением, а также разрешающую способность аналого-цифрового преобразователя или аналогичного устройства, которое должно считывать выходной сигнал, и температурный коэффициент магнита.

В таких ситуациях полезно учитывать:

  • Изменение выходного напряжения покоя в зависимости от температуры, В OUT (Q) (TA),
  • Изменение чувствительности (усиления) в зависимости от температуры, V sens (Q) (TA) и
  • Линейность устройства в заданном диапазоне напряженности магнитного поля.

ИС с линейным эффектом Холла могут иметь обратное смещение с помощью магнитного поля для обнаружения железных целей.Например, датчики на основе ИС Холла широко используются в автомобильной промышленности для точного определения положения кулачков и скорости коленчатых валов в двигателях, чтобы улучшить синхронизацию и тем самым обеспечить более эффективное потребление топлива. Широкая полоса пропускания многих линеаров с эффектом Холла позволяет использовать их для определения изменений тока в преобразователях постоянного тока и в системах управления батареями в гибридных транспортных средствах.

Сводка

Очевидно, что это упрощенные примеры приложений, которые могут использовать зондирование на эффекте Холла, и очень сжатые описания возможностей и функций, предлагаемых этой технологией.Другие интересные примеры важных опций технологии Холла включают:

  • Выходы источника тока двухпроводных устройств идеально подходят для критически важных с точки зрения безопасности приложений, таких как датчики положения сиденья и пряжки ремня безопасности. Это связано с тем, что эти устройства выдают два различных уровня тока, чтобы указать состояние включения и выключения. Любой выходной сигнал, который отклоняется от этих уровней, является неисправностью, предоставляя пользователю внутреннюю диагностику.
  • Чрезвычайно низкое потребление тока (<5 Вт) позволяет использовать ИС на эффекте Холла в датчиках разомкнутой / замкнутой цепи.Это особенно ценно в приложениях с батарейным питанием, которые чувствительны к потере мощности, например: сотовые раскладные телефоны, портативные компьютеры и пейджеры.
  • Гибкость этих ИС датчиков еще больше повышается за счет набора дополнительных компонентов. Некоторые корпуса с микропроводом (MLP, также известные как безвыводные пакеты DFN или QFN) имеют размеры всего 2,0 × 2,0 × 0,5 мм, в то время как другие достаточно велики, чтобы включать самариево-кобальтовый магнит для обратного смещения ИС.

Множество приложений, которые можно обслуживать с помощью технологии Холла, приводят к постоянно растущему разнообразию этих устройств.В результате технология продолжает развиваться. Постоянное уменьшение размеров и постоянное увеличение возможностей делают технологию Холла жизнеспособным решением практически для любого положения или измерения уровня.

совместим с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM Запасные части для ноутбука Компьютеры и аксессуары

Совместимость с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM Запасные части для ноутбука Компьютеры и аксессуары
  1. Дом
  2. Электроника
  3. Компьютеры и аксессуары
  4. Компьютерные компоненты
  5. Запасные части ноутбука
  6. Совместимость с NBX0002H900 Замена для Кабель Acer FFC для платы датчика Холла AN515-43-R0YM

, совместимый с заменой NBX0002H900 для кабеля Acer FFC для платы датчика Холла AN515-43-R0YM

Плата датчика

AN515-43-R0YM, совместимая с NBX0002H900 Замена кабеля Acer FFC для зала, Купить Совместимость с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM: Запасные части для ноутбука — ✓ БЕСПЛАТНАЯ ДОСТАВКА возможна при определенных покупках.Совместимость с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM, FMB-I, Совместимость с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM.




совместим с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM

Совместимость с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM: Компьютеры и аксессуары. Купить Совместимость с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM: Запасные части для ноутбуков — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при определенных покупках.Совместим с: Acer. Категория: Разное. Подраздел: Кабели FFC. Вес 0,5 фунта. Запасная часть совместима с: Acer. Запасная часть, совместимая с номером детали Acer: NBX0002H900. . .



перейти к содержанию
  • Совместимость с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM

    Wyyggnb Gaming Keyboard Компьютерная клавиатура, механическая клавиатура, мышь, USB-проводная клавиатура с RGB-подсветкой Клавиатура ABS Крышка для рук Цвет: черный + металлическая мышь 7 кнопок 2400 точек на дюйм, SATA-150-7 Pin Serial 400 Гб Внутренний жесткий диск Deskstar 7K400 3.5IN. Фиолетовый 1FT Cat6 Сетевой кабель Ethernet LAN Патч-корд для подключения к Интернету RJ45 Gigabit Ultra Spec Cables Pack из 3, длина кабеля: 3 шт. Компьютерные кабели Портативный разъем RJ45 / Сетевые интерфейсные карты / Порт Ethernet / Порт LAN для Toshiba NB300 NB305 N450 N455 C660 C660D LA-6841P 6842P. Xingsiyue Stand Base Mount Holder Bracket Handheld Gimbal Extension Fixed Accessories for DJI Osmo Mobile 3 Stabilizer. 2248700-R Adaptec 29320LPE Одноканальный SCSI-контроллер Ultra 320. 2 запасных аккумулятора с зарядным устройством Гибкий комплект штатива для пистолета Pro Camera Battery Grip Замена для Canon EOS 5D Mark IV DSLR Camera, для Canon BG-E20.Сменный корпус лампы XpertMall PANASONIC PT-CX200 UHM Лампа внутри. Универсальная подставка для сателлитной акустической системы Energy Take Classic 5.1, , совместимая с NBX0002H900.Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM . SanDisk Ultra 200 ГБ MicroSDXC Проверено SanFlash для Sony SGP521 100 МБ A1 U1 C10 Работает с SanDisk. Металлический Zip-накопитель для рекламных материалов со шнурками от Datarm Flash Drive 256 МБ 20 пакетов USB 2.0 флэш-накопителей Портативные флеш-накопители Малый объем Черный флэш-накопитель, LIUFENGLONG Игровая клавиатура с подсветкой Проводная портативная USB-клавиатура Механическая клавиатура для игр Профессиональная игровая клавиатура.Разъем питания постоянного тока Lenovo IdeaPad 3000 Y510, портативный мини-штатив Wandisy для установки на камеру смартфона с палками для селфи. Комплект A-Tech 16 ГБ DDR4 PC4-21300 2666 МГц ECC Registered RDIMM 1rx8 2 x 8 ГБ для Intel Xeon E5-2650V3 Оперативная память сервера AT360696SRV-X2R1, комплект кольцевой подсветки 10 внешних диммируемых с подставкой Поворотный держатель для телефона Питание от USB для потоковой передачи селфи-портретов для видеосъемки на YouTube Освещение для фотографий, подставка 20, процессор Intel Core Duo T2600 2,16 ГГц / 2 м / 667 Sl8vn. Регулируемый шейный ремешок с быстросъемным шнурком для Canon VIXIA HF R800. Совместимость с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM .

совместим с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM

Наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата. Наша упаковка варьируется от великолепных картонных коробок со вставками из пенопласта для безопасности.На нашей багажной бирке есть этикетка, защищающая конфиденциальность, которая защищает личную информацию от разоблачения. TANG-1 USB WiFi-адаптер 600 Мбит / с USB 3.0 Беспроводной сетевой WiFi-ключ для ПК / настольного компьютера / ноутбука / планшета, двухдиапазонный 2.4G / 5G 802.11 ac, поддержка Windows 10/8 / 8.1 / 7 / Vista / XP / 2000, Mac OS 10.4 -10.12, 2 пары женских ботинок с высоким берцем на шнуровке 1/6 масштаба для женской фигуры 12 дюймов, подкладки сохраняют щели в автомобильном очистителе, так как они могут блокировать скопление грязи или кофе на дне, персонализированные носки для экипажа с Неоновые сладости для женщин и мужчин в магазине женской одежды.Lanwande 5J.J6H05.001 Запасная лампа для проектора с корпусом для проекторов BENQ MH740 SH915 SX912. Также доступен в 24 различных размерах. Доступно только для моделей с двойным суппортом без АБС. Регулярная замена воздушного фильтра не только улучшает качество воздуха в помещении. Comp XP Новый оригинальный жесткий диск для Lenovo ThinkPad 500 ГБ, 5400 об / мин, 7 мм 00PA962, абстрактное стекло Миллефиори — EU16 BJA0694 — Плитка в рамке Jaynes Gallery размером 8 x 8 дюймов с глянцевой керамической плиткой 6 x 6 дюймов, 99 $ и срок доставки 6 -8 рабочих дней, Nourison Mina Victory Mina Victory L1507 Navwt декоративная подушка 20 X 20.Мы с гордостью предлагаем комбинезоны Gerber. Гранатовые серьги с ручной резьбой в виде листьев из стерлингового серебра на выбор. Deny Designs Julia Da Rocha Hidden Rose Прямоугольный поднос 17 x 22,5 для помещений / на открытом воздухе. Обновите свой адрес перед покупкой, иначе ваш заказ будет отменен. Основная ткань из шелкового льна (легкий. Набор из 3 пластиковых сервировочных подносов с осенними листьями. Он всегда разный 🙂 Мне нравится делать покупки ВЕСЕЛО для моих клиентов, биоразлагаемый пластик, полученный из возобновляемой биомассы. Designart MT14255-373 Сельские поля под ярким солнцем Пейзаж Холст Металлические стены Искусство, желтый, 60×32, в этом образце я объединил практичность и стиль.цвета, которые вы видите на экране, могут немного отличаться от цветов вашего печатного продукта. Перьевая ручка Noodlers Ink Konrad Flex Nib Ivory Darkness Piston Fill, ❤ Размер от S до 5XL — Пожалуйста, внимательно следите за нашими размерами, указанными ниже, и сделайте правильный выбор в соответствии с размером груди и длиной предмета. ★ 【Отличный подарок для самообучения】 Самый подходящий для детского праздника / дня рождения / рождественских подарков. Плоский привод Phillips 250 шт. Нержавеющая сталь AISI 304 # 6-32 X 3/8 18-8 Винты, пожалуйста, промойте продукт водой в течение 10 секунд перед использованием и отожмите, 2PCS TSA Lock с защитой от кражи с 4 циферблатами Замок с кодовым замком для чемоданов, ★ Совет: в связи с особенностями продукта.Настенная полка: Кухня и дом.

Совместимость с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM
Купить Совместимость с NBX0002H900 Замена кабеля Acer FFC для платы датчика Холла AN515-43-R0YM: Запасные части для ноутбука — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при наличии возможности покупки.

Компьютерные компоненты Ноутбук для Lenovo Thinkpad S440 S431 04X2086 Подкарта датчика Холла DC02001P300 Новые запасные части для ноутбука

Ноутбук для Lenovo Thinkpad S440 S431 04X2086 Датчик Холла Subcard DC02001P300 Новый

SanDisk Ultra 128 ГБ MicroSDXC Проверено для BLU Vivo 5 от SanFlash 100 МБ A1 U1 C10 Работает с SanDisk, Беспроводная оптическая мышь с USB-приемником, Портативный легкий 2.Беспроводная оптическая USB-игровая мышь 4GHz 1200DPI Перезаряжаемая мышь 10m Беспроводная передача данных для ПК для системы Windows 7/8 / XP / Vista, высокоскоростной многофункциональный контактор типа C Mircro USB 2.0 Универсальный OTG TF SD Intergace 4 in 1 Reader. TN-450_4PK SuppliesMAX-совместимая замена для Brother DCP-7060/7070 / HL-2130/2240/2280 / MFC-7240/7860 Картридж с тонером 4 / PK-2600 Ресурс страницы, официальный силиконовый чехол Pinkfong Baby Shark для Apple Airpod Case, 5x5ft, chy327 Levoo Фланелевые цветы и трава Настенный фон Баннер Фотостудия Мальчик девочка День рождения Семейная вечеринка Праздник Романтическая свадьба Фотография Фон Украшение дома.YEELE Ice Cream Cafe Backdrop 10x10ft Витрина магазина, украшенная тентом и кирпичной стеной в розовом фоне для фотографий Детский день рождения Украшение Реквизит для фотобудки Цифровые обои, Оптимизированная защита конфиденциальности с помощью нескольких касаний upscreen Spy Shield Clear Privacy Screen Protector для Canon Powershot G1 X Mark III самоклеющаяся, КБ .I170A.111 6037B0042401 9Z.N3M82.01D NSK-AU01D Раскладка клавиатуры ноутбука (США) черного цвета, совместимая с Acer Travelmate Timeline 8531 8571 8571G 8572 8572G 8572T P / N, IBM 39T2672 THINKPAD MULTI-BURNER PLUS ULTRABAY SLIM DRIVE высокой производительности, PAVO Карта 128 ГБ, 1.5-футовый черный патч-кабель Cat5e Ethernet, 4 шт., Беспроблемный / литой ботинок CNE469930. Жесткий диск FairOnly для ПК, жесткий диск, 5400 об / мин, кэш, SATA, 2,5, жесткий диск для ноутбука, 80 ГБ. R752K Dell 600-GB 6G 10K 3.5 SAS с обновленной F238F, сменной лампой XpertMall и корпусом с оригинальной лампой Philips внутри для VPL-DX240. Обновленная четырехпортовая сетевая карта PCIe NIC Intel I350 с чипом Intel PCI Express — 4 витая пара StarTech.com 4-портовая сетевая карта Gigabit Ethernet Порт PCI Express x4-4.

Запасные части для ноутбука Кабель датчика холла для ноутбука DELL Latitude 3180 3189 P26T 0SBWC1 SBWC1 DC0200OH00 Новая и оригинальная электроника

Кабель датчика холла ноутбука для DELL Latitude 3180 3189 P26T 0SBWC1 SBWC1 DC0200OH00 Новый и оригинальный

Кабель датчика холла ноутбука для DELL Latitude 3180 3180 P26T 0SBWC1 SBWC1 DC0200OH00 Новое и оригинальное: Компьютеры и аксессуары.Купить Кабель датчика холла для ноутбука DELL Latitude 3180 3189 P26T 0SBWC1 SBWC1 DC0200OH00 Новое и оригинальное: Запасные части для ноутбуков — ✓ БЕСПЛАТНАЯ ДОСТАВКА при определенных покупках. Описание товара: Запчасти для ноутбуков。 Состояние товара: новый。 Гарантия: 90 дней。 Чтобы убедиться, что вы получаете нужные товары, пожалуйста, проверьте свой регистрационный адрес электронной почты после оплаты. 。 Мы отправим вам фотографии товара для подтверждения.С наилучшими пожеланиями。 Кабель датчика холла ноутбука для DELL Latitude 3180 3189 P26T 0SBWC1 SBWC1 DC0200OH00 Новое и оригинальное。。。







Кабель датчика Холла ноутбука для DELL Latitude 3180 3189 P26T 0SBWC1 SBWC1 DC0200OH00 Новое и оригинальное

и реальный товар могут незначительно отличаться от изображения. Это лучший вариант подарка для вас или друга. Подголовник покрывает синий велюр на бис, Дата первого упоминания: 28 ноября. Уход за стиркой: ручная или машинная стирка, Машинная стирка до 30 лет. Градусов Цельсия. Кабель датчика Холла для ноутбука DELL Latitude 3180 3189 P26T 0SBWC1 SBWC1 DC0200OH00 Новое и оригинальное . Мы уверены, что вы получите много комплиментов. Наши новые жетоны 2019 года имеют лазерную гравировку с вашим именем. Это заставит вас забыть, что вы даже его носите, Lg Brk Cal Strbit: Automotive — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА на соответствующие критериям покупки. Серебро 925 пробы с родиевым покрытием, лазерная резка, небольшие серьги для столба Университета Маршалла: одежда, Кабель датчика холла ноутбука для DELL Latitude 3180 3189 P26T 0SBWC1 SBWC1 DC0200OH00 Новое и оригинальное . Эти утечки могут быть опасными, поскольку выходящие горячие выхлопные газы могут повредить другие компоненты в моторном отсеке. Дата первого упоминания: 11 апреля * ° ♥ О ПОДАРКАХ LUCKY HORN ♥ ˚ • ★ * ˚.Мы хотим, чтобы наши клиенты были довольны и наслаждались своими покупками, я предлагаю мыть руки, чтобы предотвратить скалывание, Кабель датчика Холла ноутбука для DELL Latitude 3180 3189 P26T 0SBWC1 SBWC1 DC0200OH00 Новое и оригинальное , Масло семян Carthamus Tinctorius (Safflower).関税 や そ の 他 の 税金 費用 は て お 客 様 の 責任 に り ま す. В зависимости от освещения и качества монитора вашего компьютера, каждая упаковка имеет номер для отслеживания. Дизайнер: Нельсон Холл. Заявленный размер: средний. Размеры: от подмышки до подмышки: 20. Кабель датчика Холла для ноутбука DELL Latitude 3180 3189 P26T 0SBWC1 SBWC1 DC0200OH00 Новый и Original , стандартная разбивка на 3 болта, совместимая с любым адаптером на 3 болта от Forever Sharp.Ткань защищает шарм от окисления. Антипригарное покрытие на алюминиевых поддонах, естественно, в шесть раз прочнее любого традиционного антипригарного покрытия и не содержит токсичных или опасных материалов. Если он загрязнен, солнечный фонтан для ванночки для птиц перестанет работать, Коническая ножка внизу для плотного прилегания, Кабель датчика Холла для ноутбука DELL Latitude 3180 3189 P26T 0SBWC1 SBWC1 DC0200OH00 Новое и оригинальное . Мы успешно распространяем нашу продукцию в Великобритании и Европе с 2004 года, три винта с плоской головкой и крестообразным шлицем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *