ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ БАТАРЕЕК
Всё ещё много электронных устройств имеют батареечное питание от стандартных пальчиковых или мини пальчиковых аккумуляторных батареек АА и ААА. Особенно это касается прожорливых китайских игрушек с моторчиками и лампочками. Для заряда таких 1,4-вольтовых элементов питания можно купить готовое промышленное ЗУ, которое вешается на розетку. Но если вы хотите немного сэкономить, а также исключить опастность поражения током (если зарядным пользуется ребёнок), рекомендуем собрать вот такое несложное зарядное устройство своими руками. Оно не зависит от наличия сети 220В и способно взять энергию от любого подходящего USB девайса — ноутбука, планшета и т.д. То есть заряжать батарейки можно и от автомобиля (при наличии специального юсб-адаптера в прикуриватель). Любой порт USB может выдавать 5V с током до 500 мА. Это делает порт USB удобным источником энергии для различных компактных устройств, в том числе для этого зарядного устройства.
Схема простого зарядного USB — АА
Рисунок печатной платы ЗУ
Итак, зарядное устройство предназначено для зарядки двух АА NiMH или NiCd ячеек аккумуляторов любой ёмкости при токе около 470 мА. Таким образом оно будет заряжать 700mAh NiCd около 1,5 часов, 1500mAh NiMH около 3,5 часов, и 2500mAh NiMH в около 5,5 часов. Здесь режим не 0,1С, поэтому заряд ускоренный.
Схема зарядного устройства включает в себя блок автоматического отсечения напряжения в зависимости от температуры батареек, поэтому их можно оставить в зарядном устройстве на неопределенный срок, в том числе после отключения.
Основа зарядного устройства — Z1A, одна половина двойного компаратора напряжения
В USB кабеле контакты [+5 VSB] и [GND] находятся по краям разъема. Обычно от контакта [+5 VSB] идет красный провод, а от [GND] – черный. Но перед подключением к схеме обязательно надо промерять полярность мультиметром.
Устройство собрано на небольшой печатной плате, файл которой находится тут. Пока зарядил два аккумулятора с проверкой тестером до 3-х вольт с 2,5В за 2 часа. Дальнейшая работа с устройством никаких проблем не выявила. Сборка и испытание схемы зарядного — Igoran.
Форум по данной схеме
Форум по обсуждению материала ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ БАТАРЕЕК
Зарядное устройство для батареек | Каталог самоделок
Питание от батареек есть у многих электронных устройств. Особенно любят ими укомплектовывать игрушки с моторами и лампочками производители в Китае. Заряжаются такие устройства с помощью с помощью пальчиковых батареек классов АА и ААА. Чтобы зарядить такие элементы питания обычно используют розетку, вставляя туда готовые промышленные зарядки.
Можно сделать процесс зарядки батареек более экономичным и безопасным. Для этого понадобится изготовить зарядное устройство самостоятельно. Дополнительными преимуществами его станут: не зависимость от наличии сети в 220 В и возможность питания от любой техники, имеющей usb-вход. В качестве источника энергии подойдут ноутбук, планшет и даже автомобиль (при наличии адаптера на прикуриватель). Подойду любые usb-порты, способные выдавать 5V при силе тока до 500 мА.
Для изготовления простого разрядного устройства потребуется электрическая схема, представленная на рисунке:
На базе этой схемы создается печатная плата зарядного устройства:
Проектируемое зарядное устройство будет способно питать две батарейки АА с NiCd или NiMH ячейками. Получать энергию от него смогут аккумуляторы любой емкости при силе тока в районе 470 мА. С помощью ускоренного режима заряда батарейки 700 mAh будут готовы к полноценной работе через 1,5 часа, 1500 mAh – через 3,5, а самые мощные 2500 mAh – через 5,5.
Если температура батареек существенно увеличится, то зарядное устройство автоматически отсечет напряжение с помощью специального блока. Можно не опасаться оставлять его без присмотра на долгое время.
В качестве основы для зарядного устройства взят элемент Z1А, половина двойного компаратора напряжения LM393. «Контакт 1» является выходом и имеет два состояния: плавающее и низкое. Этот выход во время питания батареи через R5 управляет транзистором. Элемент Z1В на схеме отвечает за светодиодный индикатор, сигнализирующий о зарядке батареек. С помощью резистора R6 ток светодиода ограничен до 10 мА. АКБ имеет прямой контакт с термистором TR1, который дает сигнал к прекращению заряда при сильном перегреве. TIP31 представляет собой маломощный составной транзистор.
По краям разъема usb-кабеля выведены контакты +5VSB (красный провод) и GND (черный провод). Но специалисты рекомендуют перед подключением к схеме в обязательном порядке измерять мультиметром полярность.
Зарядное устройство собрано на компактной печатной плате, схему которой можно найти в архиве:
АРХИВ
В тестовом режиме зарядное устройство отлично справляется со своими функциями. Два аккумулятора вполне возможно зарядить за пару часов. Дальнейшая бесперебойная работа показывает его надежность.
Зарядное устройство для аккумуляторов своими руками: схемы, типы, порядок работ
Содержание статьи
Сейчас нет смысла собирать самостоятельно зарядное устройство для автомобильных аккумуляторов: в магазинах огромный выбор готовых устройств, цены на них приемлемы. Однако не будем забывать о том, что приятно что-то сделать полезное своими руками, тем более что простое зарядное устройство для автомобильного аккумулятора вполне можно собрать из подручных деталей, и цена его будет копеечной.
Единственное, о чем сразу стоит предупредить: схемы без точной регулировки тока и напряжения на выходе, которые не имеют отсечки тока по окончании заряда, пригодны для зарядки только свинцово-кислотных аккумуляторов. Для AGM и гелевых аккумуляторов использование подобных зарядок приводит к повреждению аккумуляторной батареи!
Как сделать простейшее трансформаторное устройство
Схема этого зарядного устройства из трансформатора примитивна, но работоспособна и собирается из доступных деталей – таким же образом сконструированы и заводские зарядные устройства простейшего типа.
По своей сути – это двухполупериодный выпрямитель, отсюда и требования к трансформатору: так как на выходе таких выпрямителей напряжение равно номинальному напряжению переменного тока, помноженному на корень из двух, то при 10В на обмотке трансформатора мы получим 14,1 В на выходе зарядного устройства. Диодный мост берётся любой с прямым током более 5 ампер или собрать его из четырех отдельных диодов, с теми же требованиями к току подбирается и измерительный амперметр. Главное – разместить его на радиаторе, который в простейшем случае представляет собой алюминиевую пластину не менее 25 см2 площадью.
Примитивность такого устройства – не только минус: за счет того, что у него нет ни регулировки, ни автоматического отключения, оно может использоваться для «реанимации» сульфатированных аккумуляторов. Но не нужно забывать и об отсутствии защиты от переполюсовки в этой схеме.
Читайте также: Характеристики автомобильных аккумуляторовГлавная проблема – где найти трансформатор подходящей мощности (не менее 60 Вт) и с заданным напряжением. Можно использовать, если подвернется советский накальный трансформатор. Однако его выходные обмотки имеют напряжение 6,3В, поэтому придется соединять две последовательно, одну из них отмотав так, чтобы в сумме на выходе получить 10В. Подойдет недорогой трансформатор ТП207-3, у которого вторичные обмотки соединяются следующим образом:
Отматываем при этом обмотку между клеммами 7-8.
Простое зарядное устройство с электронной регулировкой
Однако можно обойтись и без отмотки, дополнив схему электронным стабилизатором напряжения на выходе. К тому же такая схема будет удобнее в гаражном применении, так как позволит скорректировать ток заряда при просадках напряжения питания, ее используют и для автомобильных аккумуляторов небольшой емкости при необходимости.
Роль регулятора здесь выполняет составной транзистор КТ837-КТ814, переменный резистор регулирует ток на выходе устройства. При сборке зарядки стабилитрон 1N754A можно заменить советским Д814А.
Схема регулируемого зарядного устройства проста для повторения, и легко собирается навесным монтажом без необходимости в травлении печатной платы. Однако учтите, что полевые транзисторы размещаются на радиаторе, нагрев которого будет ощутим. Удобнее воспользоваться старым компьютерным кулером, подключив его вентилятор к выходам зарядного устройства. Резистор R1 должен иметь мощность не менее 5 Вт, его проще намотать из нихрома или фехраля самостоятельно или соединить параллельно 10 одноваттных резисторов по 10 ом. Его можно и не ставить, но нельзя забывать, что он защищает транзисторы в случае замыкания выводов.
При выборе трансформатора ориентируйтесь на выходное напряжение 12,6-16В, берите либо накальный трансформатор, соединив последовательно две обмотки, либо подбирайте готовую модель с нужным напряжением.
Видео: Самое простое зарядное устройство для АКБ
Переделка зарядного устройства от ноутбука
Однако можно обойтись и без поисков трансформатора, если под руками есть ненужное зарядное устройство от ноутбука – при простой переделке мы получим компактный и легкий импульсный блок питания, способный заряжать автомобильные аккумуляторы. Поскольку нам потребуется получить напряжение на выходе 14,1-14,3 В, ни один готовый блок питания не подойдет, однако переделка проста.
Посмотрим на участок типовой схемы, по которой собраны устройства такого рода:
В них поддержание стабилизированного напряжения осуществляет цепь из микросхемы TL431, управляющей оптопарой (на схеме не показана): как только напряжение на выходе превышает значение, которое задают резисторы R13 и R12, микросхема зажигает светодиод оптопары, сообщает ШИМ-контроллеру преобразователя сигнал на снижение скважности подаваемых на трансформатор импульсов. Сложно? На самом деле все просто смастерить своими руками.
Вскрыв зарядное устройство, находим недалеко от выходного разъема TL431 и два резистора, связанные с ножкой Ref. Удобнее настраивать верхнее плечо делителя (на схеме – резистор R13): уменьшая сопротивление, мы уменьшаем и напряжение на выходе зарядного устройства, увеличивая – поднимаем его. Если у нас ЗУ на 12 В, нам понадобится резистор с большим сопротивлением, если зарядное на 19 В – то с меньшим.
Видео: Зарядка для аккумуляторов авто. Защита от короткого замыкания и переполюсовки. Своими руками
Выпаиваем резистор и вместо него устанавливаем подстроечный, заранее настроенный по мультиметру на то же сопротивление. Затем, подключив к выходу зарядного устройства нагрузку (лампочку из фары), включаем в сеть и плавно вращаем движок подстроечника, одновременно контролируя напряжение. Как только мы получим напряжение в пределах 14,1-14,3 В, отключаем ЗУ из сети, фиксируем движок подстроечного резистора лаком (хотя бы для ногтей) и собираем корпус обратно. Это займет не больше времени, чем Вы потратили на чтение этой статьи.
Есть и более сложные схемы стабилизации, причем их уже можно встретить и в китайских блоках. Например, здесь оптопарой управляет микросхема TEA1761:
Однако принцип настройки тот же: меняется сопротивление резистора, впаянного между плюсовым выходом блока питания и 6 ножкой микросхемы. На приведенной схеме для этого использованы два запараллеленных резистора (таким образом получено сопротивление, выходящее из стандартного ряда). Нам нужно так же впаять вместо них подстроечник и настроить выход на нужное напряжение. Вот пример одной из таких плат:
Путем прозвонки можно понять, что нас интересует на этой плате одиночный резистор R32 (обведен красным) – его нам и надо выпаивать.
В Интернете часто встречаются похожие рекомендации, как сделать самодельное зарядное устройство из компьютерного блока питания. Но учитывайте, что все они по сути – перепечатки старых статей начала двухтысячных, и подобные рекомендации к более-менее современным блокам питания неприменимы. В них уже нельзя просто поднять напряжение 12 В до нужной величины, так как контролируются и другие напряжения на выходе, а они неизбежно «уплывут» при такой настройке, и сработает защита блока питания. Можно использовать зарядные устройства ноутбуков, выдающие единственное напряжение на выходе, они гораздо удобнее для переделки.
как сделать своими руками, схема
Автор Владимир Остапенко На чтение 18 мин Просмотров 13к. Опубликовано
Во время эксплуатации автомобиля нередко возникает ситуация, когда аккумуляторную батарею (АКБ) приходится снимать и заряжать стационарным зарядным устройством (ЗУ). Его, конечно же, можно купить, а возможно сделать своими руками. В этой статье рассмотрим несколько обычных зарядных устройств для автомобильного аккумулятора, которые несложно повторить даже начинающему радиотехнику.
Требования к зарядке АКБ
Прежде чем сделать зарядное устройство для автомобильного аккумулятора своими руками, рассмотрим .
- Зарядный ток не должен превышать рекомендованный производителем батареи. Если зарядный ток не указан (неизвестен), то он не должен превышать 10 % от принятой ёмкости аккумулятора.
- В конце процесса зарядки ток желательно уменьшить, чтобы .
- Недопустима перезарядка АКБ. Как только напряжение на клеммах заряжаемой батареи достигнет значения 13,8 ± 0,15 В, зарядку стоит прекратить. Это будет существенно для AGM и гелевых батарей.
- При пропадании сетевого напряжения не должна происходить разрядка батареи через зарядное устройство. Глубокий разряд для свинцовой АКБ губителен.
Исходя из вышесказанного, определяем требования к зарядному устройству:
- Должно обеспечивать регулировку зарядного тока.
- Потребуется наличие встроенных измерительных приборов – амперметра и вольтметра, – позволяющих контролировать ток заряда и .
- Обязательно наличие цепей, предотвращающих разряд АКБ через зарядное устройство при пропадании сетевого напряжения.
Полезно. Первый и второй пункты могут выполняться оператором вручную, но существуют и автоматические ЗУ, самостоятельно регулирующие ток во время зарядки и отключающие батарею, как только она полностью зарядится. Третий пункт должен выполняться независимо от сложности схемы ЗУ.
Как сделать самодельное зарядное устройство для АКБ
А теперь рассмотрим несколько схем разной сложности, которые отвечают вышеперечисленным требованиям к ЗУ и не особо сложны для повторения.
Простой “зарядник” с гасящими конденсаторами
Это несложное устройство позволяет заряжать аккумуляторы ёмкостью до 100 А·ч произвольным током, который регулируется в интервале 1–10 А с шагом 1 А, что будет достаточно для качественного обслуживания любого автомобильного аккумулятора.
Схема простого зарядного устройства с гасящими конденсаторами
В ЗУ встроен понижающий трансформатор Тр1, сетевое напряжение на него подаётся через блок гасящих конденсаторов С1-С4. Каждый из конденсаторов имеет собственный переключатель, включающий его в цепь питания трансформатора. Ёмкости конденсаторов подстроены таким образом, что переключатели S1–S4 имеют вес 1, 2, 4, 8 А соответственно.
Комбинируя положения переключателей, можно выбрать произвольный ток зарядки в диапазоне 1-10 А, с шагом 1 А. К примеру, если необходимо выставить ток 6 А, то нужно замкнуть переключатели S3 и S2. Ток в 5 А обеспечит включение переключателей S3 и S1.
Пониженное трансформатором напряжение подаётся на диодный мост, выпрямляется и выходит на клеммы Х3 и Х4, к которым подключается заряжаемая батарея. Ток зарядки измеряют амперметром PA1, а вольтметр PV1 выдаёт напряжение на клеммах батареи. Цепей защиты от разряда батареи через зарядное устройство в случае пропадания сетевого напряжения в этой схеме ЗУ нет, поскольку их роль исполняет диодный мост.
О деталях. Конденсаторы С1–С4 подбирают неполярные типа МБГО, МБГП, МБЧГ, КБГ-МН, МБМ или МБГЧ с рабочим напряжением не менее 300 В для МБГЧ и КБГ-МН и не более 600 В для приборов остальных типов.
Категорически недопустимо использование электролитических конденсаторов, даже если они рассчитаны на соответствующее напряжение. “Электролит” — полярный прибор, работающий только в цепях постоянного тока. При подключении в цепь переменного тока он просто взорвётся.
Вместо диодов Д242 можно применять любые другие, выдерживающие ток не менее 10 А и обратное напряжение не ниже 25 В. Подходят, например, диоды Д214 или германиевые Д305. При любых условиях их нужно поставить на радиаторы. Трансформатор Тр1 обычный сетевой с выходным напряжением 24–26 В, способный обеспечить хотя бы полуторный зарядный ток. Приборы PA1 и PV2 — амперметр с пределом измерения 10–15 А и вольтметр на напряжение 20 В соответственно.
Указанное зарядное устройство можно применять и для зарядки батарей с другим напряжением (например, 6-вольтовых), но здесь необходимо учитывать, что «вес» тумблеров S1–S4 будет другой, и придётся определяться по амперметру.
Прибор для зарядки и тренировки аккумулятора
Это самодельное зарядное устройство заряжает аккумулятор пульсирующим током, причём в паузах между импульсами зарядки батарея разряжается током порядка 0,5 А. Это позволяет не только качественно зарядить батарею, но и успешно , осуществляя тренировку АКБ. Зарядный ток в импульсе может достигать 10 А, регулировка тока плавная.
Электрическая схема зарядного устройства для тренировки батарейСетевое напряжение понижается трансформатором Т1 до величины 25 В и подаётся на однополупериодный выпрямитель, собранный на диодах D1 и D2, включенных параллельно для увеличения мощности. Регулировка тока происходит при помощи ключа, встроенного на транзисторе VТ1, включенного в минусовую цепь зарядки. Степень открытия транзистора, а значит, и зарядный ток — регулируется с помощью переменного резистора R1. Питание резистор получает от простейшего параметрического стабилизатора R1, D3.
По окончании каждого положительного полупериода диоды запираются, и до начала следующего — батарея разряжается через балластный резистор R4. Ток разрядки фиксированный и, как было сказано выше, составляет 500 мА. Зарядный ток контролируется при помощи амперметра PA1, а напряжение на батарее вольтметром PV1.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопросКонтролируя зарядный ток, необходимо учитывать, что его часть (около 10 %) течёт через балластный резистор R4. Кроме того, прибор показывает усреднённое значение, тогда как зарядка батареи производится только в половину периода. Поэтому, к примеру, при импульсном зарядном токе в 5 А амперметр с учётом потерь на R4 покажет 1,8 А.
Для предупреждения глубокого разряда батареи через балластный резистор при пропадании сетевого напряжения введён узел защиты, собранный на реле К1. Пока зарядное устройство работает, его обмотка находится под напряжением, а контакты К1.1 и К1.2 (включены параллельно для увеличения мощности) подключают батарею к ЗУ. При пропадании сетевого напряжения реле отпускает, и его контакты отключают заряжаемый аккумулятор.
О деталях. На месте Т1 может работать любой силовой трансформатор, выдающий 22–25 В при токе в 5 А. Диоды D1 D2 — любые десятиамперные, выдерживающие обратное напряжение не ниже 40 В. Они установлены на общий радиатор. VТ1 — транзистор серии КТ827 с любой буквой. Его тоже нужно поставить на радиатор. Если корпус прибора металлический, то в качестве радиатора может выступать и он.
Стабилитрон D3 — любой маломощный с напряжением стабилизации 7,5–12 В. Резисторы R3 и R4 — С5-16МВ и ПЭВ-15 соответственно. В качестве К1 используется реле переменного тока РПУ-0 на напряжение срабатывания 24 В. Каждая группа его контактов выдерживает ток до 6 А.
Полезно. При необходимости можно применять реле постоянного тока, но тогда его обмотку придётся подключить к схеме через выпрямительный мост.
Зарядное устройство для АКБ с ШИМ-регулировкой тока
Эта схема способна обеспечить зарядный ток до 6 А и выделяется небольшими габаритами, поскольку использует широтно-импульсный метод регулирования (ШИМ), а управляющий током зарядки транзистор работает в ключевом режиме, что существенно снижает рассеиваемую на нём мощность.
Электросхема зарядного устройства с ШИМ
Задающий генератор блока регулировки тока собран на элементах DD1.1, DD1.2 микросхемы К561ЛА7, элементы DD1.3, DD1.4 — буферные. Частота генератора — 13 кГц, скважность плавно регулируется с помощью переменного резистора R3. С генератора сигнал поступает на регулирующий элемент — мощный полевой транзистор VT1, работающий в ключевом режиме.
В зависимости от положения движка переменного резистора отношение времени открытия транзистора к его закрытому состоянию меняется, а значит, изменяется и средний ток зарядки батареи, который можно контролировать при помощи амперметра PA1.
Питание микросхема получает от простейшего параметрического стабилизатора, собранного на элементах R1, VD4. Сам стабилизатор подключен к выпрямительному мосту, обеспечивающему напряжение зарядки. Из соображений компактности, диодный мост собран на полупроводниках Шоттки с незначительным падением напряжения. Лампа EL1 — индикаторная.
Двухполупериодный выпрямитель на двух диодахО деталях. Вторичная обмотка трансформатора Т1 должна обеспечивать ток 6–7 А при напряжении 16–20 В. Если использовать трансформатор, у вторичной обмотки которого есть отвод от середины, то выпрямитель можно собрать по схеме, приведённой ниже, сократив число выпрямительных диодов вдвое.
В мостовом выпрямителе используется диодная сборка VD1.1 VD1.2 и два отдельных диода VD3 и VD4. Все элементы установлены на общий радиатор 160х45 мм через слюдяные прокладки. При необходимости диоды Шоттки можно заменить обычными выпрямительными, но габариты устройства при этом увеличатся, поскольку понадобится радиатор большего размера. При замене необходимо учитывать, что диоды должны выдерживать ток 10 А и обратное напряжение не менее 40 В.
Если зарядный ток не будет превышать 5 А, то транзистор VT1 устанавливать на радиатор не нужно. При большем токе понадобится радиатор — медная или алюминиевая пластина размером 50х50х1 мм.
В качестве амперметра используется индикатор записи магнитофона М476/2, включенный параллельно с шунтом. Шунт представляет собой кусок медного обмоточного провода ПЭВ-2 1,5, намотанный на оправку диаметром 8 мм. Количество витков — 16, сопротивление — около 0,1 Ом.
Зарядное устройство с фазоимпульсной регулировкой
Это мощное зарядное устройство славится тем, что собрано из доступных советских деталей, которые наверняка найдутся у любого радиотехника. Прибор обеспечивает плавную регулировку тока в пределах 0 … 10 А и пригоден для зарядки аккумуляторов ёмкостью до 100 А·ч.
Схема зарядного устройства для автомобильных аккумуляторов с фазоимпульсной регулировкой
Это обычный тиристорный регулятор напряжения с фазоимпульсным управлением. Роль элемента управления выполняет аналог однопереходного транзистора, сделанный на двух биполярных приборах VT1 и VT2. Изменяя сопротивление переменного резистора R1, мы меняем время задержки открывания тиристора относительно начала полупериода, а значит, и ток зарядки, который контролируется по показаниям амперметра PA1. Для измерения напряжения на клеммах батареи служит прибор PV1. Питается устройство от мостового выпрямителя VD1–VD4, подключенного к понижающему трансформатору Т1.
О деталях. Вместо заданного на схеме тиристора КУ202В можно использовать КУ202 с буквами Г–Е, а также более мощные Т-160 и Т-250. Диоды VD1–VD4 — обычные выпрямительные с обратным напряжением не менее 40 В и выдерживающие ток 10 А. Подойдут, например, Д242, Д243, Д245, КД203, КД210, КД213 и т. п.
Тиристор и выпрямительные диоды необходимо установить на радиаторы с эффективной площадью рассеяния 100 см2 каждый. Если используется мощный тиристор серии «Т», то на радиатор его ставить не нужно. В качестве Т1 можно использовать любой силовой трансформатор, обеспечивающий ток 10 А при напряжении 18–22 В. Отлично подойдёт, к примеру ТН-61, имеющий три обмотки по 6,3 В при токе 8 А. Этого вполне достаточно для зарядки батареи ёмкостью до 80 А·ч.
Транзистор КТ361А можно заменить на КТ361б – КТ361Е, КТ502В, КТ3107А, КТ501Ж – КТ501К, КТ502Г. На месте VT2 может работать КТ315А-КТ315Д, КТ3102А, КТ312Б. Вместо диода КД 105Д подойдут КД105Г, КД105В, Д226 (с любым индексом). Измерительный прибор PA1 — амперметр с пределом измерения 10–15 А или микроамперметр с соответствующим шунтом. PV1 — вольтметр с пределом измерения 15–20 В.
Зарядное устройство с регулировкой по высокому напряжению (по первичной обмотке)
Это устройство отличается от предыдущих тем, что тиристорный регулятор зарядного тока расположен в цепи первичной обмотки силового трансформатора. При помощи этого ЗУ можно заряжать батареи током до 6 А. Поскольку коммутируемые токи по напряжению 220 В будут намного меньше, чем по низкому, радиатор регулирующему элементу не нужен. Кроме того, амперметр PA1 не имеет громоздкого шунта, а значит, устройство получается несколько компактнее.
Зарядное устройство с регулировкой по высокому напряжениюВ этой схеме используется всё тот же фазоимпульсный метод. Поскольку тиристор не может работать в цепях переменного тока, он включен через диодный мост VD1–VD4. Управляет тиристором однопереходный транзистор VT1. Задержка его открывания от начала полупериода зависит от положения движка переменного резистора R5. Именно им и регулируется зарядный ток.
В момент открытия тиристор шунтирует диодный мост, и всё сетевое напряжение прикладывается к первичной обмотке T1. При этом со вторичной обмотки снимается напряжение определённой величины (0–20 В, в зависимости от положения движка переменного резистора R5) и, пройдя через выпрямитель VD5–VD8, поступает на клеммы заряжаемого аккумулятора. Узел измерения тока собран на микроамперметре, зашунтированном резистором R1. Резистор R2 служит для калибровки прибора. Лампа HL1 — индикаторная.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопросВольтметра это зарядное устройство не имеет, поэтому контролировать напряжение на клеммах заряжаемого аккумулятора придётся внешним вольтметром, к примеру, тестером. Впрочем, ничего не мешает просто встроить вольтметр в прибор.
О деталях. На месте VD1–VD4 могут работать диоды Д231–Д234, Д245, Д247 с любым буквенным индексом, КД202 с буквами К, М, Р. Радиаторы им, как и тиристору, не нужны. Вместо германиевых Д305 в низковольтном выпрямителе можно использовать Д231–Д233 без буквенного индекса или с буквой А. Их придётся установить на радиаторы с площадью поверхности 100 см2.
Конденсатор С1 должен иметь по возможности меньший ТКЕ, иначе при прогреве устройства зарядный ток «поплывёт». Подойдут конденсаторы типа К73-17 или К73-24. Трансформатор Т1 должен обеспечивать на вторичной обмотке напряжение 18–22 В при токе нагрузки 6–7 А. Микроамперметр (PA1) можно взять любой с током полного отклонения 100 мкА.
Важно! Все элементы зарядного устройства, включенные в цепь первичной обмотки, во время работы прибора находятся под опасным для жизни напряжением. Перед любой перепайкой или изменением схемы обязательно отключаем конструкцию от сети, а на шток переменного резистора R5 надеваем ручку из изоляционного материала.
Автоматическое зарядное устройство из драйвера для светодиодных лент
Драйвер для питания светодиодных лент, если он достаточно мощный (не менее 100 Вт), — готовое зарядное устройство для автомобильного аккумулятора. Единственное, что нас не устраивает — это выходное напряжение. Драйвер выдаёт 12 вольт, конечное напряжение зарядки свинцово-кислотного аккумулятора — 13,8 В. Если учесть падение напряжения на зарядных проводах, то нам нужно заставить выдавать блок питания 14,0–14,4 вольта (зависит от толщины проводов). Этим и займёмся.
Для эксперимента возьмём драйвер мощностью 110 Вт — он сможет развить зарядный ток в 7,6 А — более чем достаточно для любого автомобильного аккумулятора. Взглянем на типовую схему драйвера китайского производства:
Типовая схема драйвера для светодиодной ленты китайского производстваНас интересует подстроечный резистор P1 (справа вверху на блоке «Выпрямитель 12 В»). Подключаем к выходу устройства вольтметр, само устройство подключаем к сети. Небольшой отвёрткой вращаем ползунок подстроечного резистора (на плате он обозначен “VR”), пытаясь поднять напряжение до 14,0–14,4 В. Скорее всего, сделать это не удастся — слишком велика разница. На нашем блоке напряжение удалось вытянуть лишь до 13,26 В.
Диапазона регулировки подстроечного резистора нам не хватилоТут есть два варианта:
- Заменить подстроечный резистор другим, большего номинала.
- Заменить постоянный резистор R37, стоящий в делителе, другим, меньшего номинала.
Воспользуемся вторым вариантом. Но тут возникает непредвиденная проблема — нумерация элементов на нашем блоке и на схеме не совпадают. «Пляшем» от подстроечного резистора, разбираясь в дорожках, и выясняем, что на нашей плате этот резистор обозначен “R30”.
Нас интересует резистор R30На схеме он имеет номинал 2,2 кОм, но мы рисковать не будем, поскольку схема явно не родная — выпаиваем его и измеряем сопротивление омметром. Результат — 5 кОм.
Номинал нашего R30 составил 5 кОмБерём переменный резистор того же номинала, впаиваем на место R30, выводим движок на максимальное сопротивление и включаем блок питания в сеть. Постепенно уменьшая сопротивление, устанавливаем необходимую величину выходного напряжения.
Напряжение на выходе составляет 14,5 ВЗдесь оно несколько выше нужного, но позже мы подгоним его более точно штатным подстроечным резистором VR.
Важно! Движок переменного резистора крутим очень осторожно, стараясь не поднимать напряжение выше 15 В, поскольку сглаживающие конденсаторы в фильтре драйвера рассчитаны на максимальное напряжение в 16 В.
Выпаиваем переменный резистор, измеряем его сопротивление.
Нам нужен постоянный резистор сопротивлением 4,5 кОмТакого номинала не существует, устанавливаем ближайший — 4,6 кОм. Снова включаем устройство, штатным подстроечным резистором VR выставляем выходное напряжение 14,0– 14,4 В. Собираем блок — и у нас в руках готовое зарядное устройство со стабилизированным выходным напряжением.
Особая прелесть такого решения состоит в том, что устройство является автоматическим и никогда не перезарядит батарею, даже если мы забудем вовремя снять её с зарядки. Идеальное решение для AGM и гелевых батарей, которые очень боятся перезаряда.
Зарядное устройство из блока питания ПК
Это устройство тоже является автоматическим — оно, как и предыдущая конструкция, не даст перезарядить аккумуляторную батарею, поскольку работает в режиме стабилизации напряжения и по окончании зарядки ток через аккумулятор падает до 0. Доработке будет подвергаться блок питания персонального компьютера, собранный на ШИМ-микросхеме TL494 или её аналогах, список которых приведён в табличке ниже.
Аналоги микросхемы TL494
Прибор | Описание | Прибор | Описание | |
GL494 | Зарубежный полный аналог | M5T494P | Зарубежный полный аналог | |
IR9494N | MB3759 | |||
MB3759 | UA494PC | |||
NE5561 | UC494 | |||
UPC494 | UC494CN | |||
XR494 | UPC494C | |||
ECG1729 | MB3759 | |||
IR3M02 | UA494DM | |||
IR9494 | IR9494 | |||
MB3759 | MB3759 | |||
UPC494C | 1114ЕУ3 | Отечественный полный аналог | ||
UA494DC | 1114ЕУ4 | |||
ECG1729 | 1114ЕУЗ | |||
HA11794 | К1114ЕУ3 | |||
IR3M02 | КР1114ЕУ4 |
Итак, разбираем блок, вынимаем из корпуса плату. Из платы выпаиваем все питающие провода, кроме зеленого. Он служит для запуска БП материнской платой. Нам подобное управление не нужно, а потому этот провод мы просто припаиваем к площадкам, к которым раньше припаивались чёрные провода (иначе говоря — замыкаем на минус), чтобы блок питания запускался сразу после подачи на него 220 В.
Зелёный провод управления припаиваем к минусовой шине питанияТеперь к площадкам, к которым подпаивались жёлтые и чёрные провода, припаиваем два толстых провода с «крокодилами» для подключения к аккумулятору. Тот, который подпаивается вместо жёлтых, будет плюсовым, а вместо чёрных — минусовым.
Теперь нужно заставить БП выдавать вместо 12 В нужные для зарядки свинцового аккумулятора 13,8–14 В (14,4 с учётом падения напряжения на проводах под нагрузкой). Делаем это точно так же, как и в предыдущей конструкции, — заменой резистора на прибор другого номинала.
Находим первый вывод микросхемы TL494 или её аналога, ориентируясь по ключу-выемке на корпусе прибора. На фото ниже первый вывод помечен красной, а сам ключ — зелёными стрелками.
Нумерация выводов ведётся от ключа против часовой стрелкиПереворачиваем плату и по дорожке, ведущей от этого вывода, определяем, что к нему подпаяны три резистора. Нас интересует тот, который вторым выводом подключен к шине +12 В. На фото ниже он помечен красным лаком.
Нас интересует этот резисторНоминал этого резистора нужно изменить (увеличить), но на сколько? Выпаиваем его и замеряем сопротивление. В нашем случае сопротивление составило 38 кОм. Берём переменный резистор примерно вчетверо большего номинала, выставляем движком сопротивление 38 кОм и впаиваем его вместо того, который выпаяли. Плавно увеличивая сопротивление, выставляем выходное напряжение на значение 14,4 В.
Установка выходного напряжения при помощи переменного резистораВажно! Для каждого блока питания номинал этого резистора будет разный, т. к. схемы и детали в блоках разные, но алгоритм изменения напряжения один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придётся перезагружать, предварительно уменьшив сопротивление переменного резистора.
Выпаиваем переменный резистор, измеряем его сопротивление, подбираем постоянный ближайшего номинала, впаиваем. Проверяем наше зарядное устройство, нагрузив его лампочкой от автомобильной фары и контролируя выходное напряжение под нагрузкой. Оно должно остаться практически тем же — 14 В.
Под нагрузкой выходное напряжение “просело” на несколько десятых — это нормальноКак заряжать аккумулятор от самодельного устройства
Зарядка аккумулятора самодельным устройством ничем не отличается от зарядки промышленным прибором.
- Выводим регулятор тока в «0».
- Подключаем заряжаемый аккумулятор к клеммам ЗУ.
- Подаём питание на ЗУ.
- Устанавливаем необходимый ток зарядки.
- При напряжении 13,2–13,4 В на клеммах батареи уменьшаем ток вдвое.
- При напряжении на клеммах 13,8 В выводим регулятор тока в «0», выключаем питание ЗУ, отключаем аккумулятор.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопросВ двух последних конструкциях контролировать напряжение на батарее не нужно — как только аккумулятор зарядится, ток зарядки станет равным нулю.
Вот в принципе и всё о самодельных зарядных устройствах. Прочитав этот материал, мы без труда сможем подобрать наиболее подходящую схему зарядного устройства и повторить её.
Зарядное устройство для портативных аккумуляторов
На одном из радиолюбительских сайтов увидел схему для зарядки портативных Ni-Mn и Ni-Cd аккумуляторов с рабочим напряжением 1,2-1,4 В от USB-порта. С помощью этого устройства можно заряжать портативные аккумуляторные батарейки током примерно 100 мА. Схема несложная. Собрать её не составит труда даже начинающему радиолюбителю.Конечно, можно купить готовое ЗУ. В продаже их сейчас великое множество и на любой вкус. Но их цена вряд ли удовлетворит начинающего радиолюбителя или того, кто способен сделать зарядное устройство своими руками.
Решил повторить эту схему, но сделать зарядное устройство для зарядки сразу двух аккумуляторов. Выдаваемый ток USB 2.0 составляет 500 mA. Так что можно смело подключить два аккумулятора. Доработанная схема выглядела так.
Так же хотелось, чтобы была возможность подключение внешнего источника питания напряжением 5 В .
Схема содержит всего восемь радиодеталей.
Из инструмента потребуется минимальный набор радиолюбителя: паяльник, припой, флюс, тестер, пинцет, отвёртки, нож. Перед пайкой радиодеталей их необходимо проверить на исправность. Для этого нам потребуется тестер. Резисторы проверить очень просто. Измеряем их сопротивление и сравниваем с номиналом. О том, как проверить диод и светодиод есть много статей в интернете.
Для корпуса использовал пластмассовый футляр размером 65*45*20 мм. Батарейный отсек вырезал из детской игрушки «Тетрис».
О переделке батарейного отсека расскажу подробней. Дело в том, что изначально
плюсы и минусы клемм питания батареек установлены противоположно. Но мне нужно было, что бы в верхней части отсека располагались две изолирование плюсовые клеммы, а внизу одна общая минусовая. Для этого я нижнюю плюсовую клемму перенёс наверх, а общую минусовую вырезал из жести, припаяв оставшиеся пружины.
В качестве флюса при паянии пружин применял паяльную кислоту с соблюдением всех правил техники безопасности. Место пайки обязательно промыть в проточной воде до полного удаления следов кислоты. Провода от клемм подпаял и пропустил внутрь корпуса через просверленные отверстия.
Батарейный отсек закрепил на крышке футляра тремя маленькими шурупами.
Готовая плата плотно села в корпус, поэтому я её закреплять не стал.
После установки всех радиодеталей на свои места проверяем правильность монтажа и очищаем плату от флюса.
Теперь займёмся распайкой шнура питания и установкой тока зарядки для каждого аккумулятора.
В качестве шнура питания использовал USB шнур от старой компьютерной мышки и кусок питающего провода со штекером от «Денди».
Шнуру питания нужно уделить особое внимание. Ни в коем случае нельзя перепутать «+» и «-». У меня на штекере «+» питания подключен к центральному контакту чёрным проводом с белой полосой. А «-» питания идёт по чёрному (без полосы) проводу на наружный контакт штекера. На USB шнуре «+» идёт на красный провод а «-» на чёрный. Спаиваем плюс с плюсом и минус с минусом. Места пайки тщательно изолируем. Далее проверяем шнур на короткое замыкание, подключив тестер в режиме измерения сопротивления к клеммам штекера. Тестер должен показать бесконечное сопротивление. Все надо тщательно перепроверить, что бы ни спалить USB-порт. Если всё нормально, подключаем наш шнур к USB-порту и проверяем напряжение на штекере. Тестер должен показать 5 вольт.
Последний этап настройки это установка зарядного тока. Для этого разрываем цепь диода VD1 и «+» аккумулятора. В разрыв подключаем тестер в режиме измерения тока включенного на предел 200 mA. Плюс тестера на диод, а минус к аккумулятору.
Вставляем аккумулятор на место, соблюдая полярность, и подаём питание. При этом должен загореться светодиод. Он сигнализирует о том, что аккумулятор подключен. Далее, изменяя сопротивление R1, устанавливаем требуемый ток заряда. В нашем случае он равен примерно 100 mA . При уменьшении сопротивления резистора R1 зарядный ток увеличивается, а при увеличении уменьшается.
То же самое делаем для второго аккумулятора. После этого скручиваем наш корпус и
зарядное устройство готово к использованию.
Поскольку различные пальчиковые аккумуляторы имеют разную
емкость, потребуется разное время для зарядки этих аккумуляторов. Аккумуляторы
емкостью 1400 мА/ч с напряжением 1,2 В потребуется заряжать с помощью данной
схемы примерно 14 часов, а аккумуляторы 700 мА/ч потребуется всего 7 часов.
У меня имеются аккумуляторы емкостью 2700 мА/ч. Но заряжать их 27 часов от USB-порта не хотелось. Поэтому я и сделал гнездо питания для внешнего источника питания 5 вольт 1А, который у меня лежал без дела.
Вот ещё несколько фото готового устройства.
Наклейки рисовал программой FrontDesigner 3.0. Затем распечатал на лазерном принтере. Вырезал ножницами, наклеил лицевой стороной на тонкий скотч шириной 20 мм. Лишний скотч обрезал. В качестве клея использовал клей-карандаш, предварительно смазав им и наклейку и место, куда она клеится. Насколько это надёжно, пока не знаю.
Плюс в том, что схема не содержит дефицитных и дорогостоящих деталей и собирается буквально на коленке. Так же есть возможность запитать от USB-порта, что не мало важно для начинающих радиолюбителей. Не надо ломать голову, откуда запитать схему. Не смотря на то, что схема очень простая, данный способ зарядки используется во многих промышленных зарядных устройствах.
Так же можно немного усложнив схему реализовать переключение зарядного тока.
Подбором R1,R3 и R4 можно выставить зарядный ток для разных по ёмкости аккумуляторов, тем самым обеспечив рекомендуемый зарядный ток для данного аккумулятора, который обычно равен 0,1C (C-ёмкость аккумулятора).
Теперь минусы. Самый большой, это отсутствие стабилизации зарядного тока. То есть
При изменении входного напряжения будет изменятся зарядный ток. Так же при ошибке в монтаже или коротком замыкании схемы есть большая вероятность спалить USB-порт.
Делаем самодельные зарядные устройства для автомобильных аккумуляторов
Самодельные зарядные устройства для аккумуляторов обычно имеют очень простую конструкцию, а дополнительно к тому и повышенную надежность как раз ввиду простоты схемы. Еще один плюс от изготовления зарядки своими руками – относительная дешевизна комплектующих и как результат – невысокая себестоимость прибора.
Почему сборная конструкция лучше покупного
Основная задача подобной техники – поддерживать на требуемом уровне заряд аккумуляторной батареи автомобиля в случае необходимости. Если разрядка АКБ произошла рядом с домом, где есть нужное устройство, то проблем не возникнет. В противном случае, когда нет подходящей техники для питания аккумулятор, и средств тоже недостаточно, можно собрать прибор своими руками.
Необходимость использования вспомогательных средств для подпитки АКБ автомобиля обусловлена в первую очередь низкими температурами в холодное время года, когда наполовину разряженная аккумуляторная батарея представляет собой главную, а иногда и вовсе не разрешимую проблему, если только вовремя не подзарядить АКБ. Тогда самодельные зарядные устройства для питания автомобильных аккумуляторов станут спасением для пользователей, которые не планируют вкладываться в такую технику, по крайней мере, в данный момент.
Принцип действия
До определенного уровня АКБ авто может получать питание от самого транспортного средства, а если точнее, от электрогенератора. После этого узла обычно устанавливается реле, ответственное за установку напряжения не более 14,1В. Чтобы аккумуляторная батарея зарядилась до предела, необходимо более высокое значение данного параметра – 14,4В. Соответственно, для реализации такой задачи как раз и применяются АКБ.
Основные узлы данного устройства – трансформатор и выпрямитель. В результате на выход подается постоянный ток с напряжением определенной величины (14,4В). Но почему наблюдается разбег с напряжением самой батареи – 12В? Это делается с целью обеспечения возможности зарядить АКБ, разряженной до уровня, когда значение данного параметра аккумулятора приравнивалось 12В. Если зарядка будет характеризоваться таким же по значению параметром, то в результате питание АКБ станет сложно выполнимой задачей.
Смотрим видео, самое простое устройство для заряда АКБ:
Но здесь есть нюанс: небольшое превышение уровня напряжения аккумуляторной батареи не является критичным, тогда как существенно завышенная величина этого параметра очень плохо скажется в дальнейшем на работоспособности АКБ. Принцип функционирования, которым отличается любое, даже самое простое зарядное устройство для питания автомобильного аккумулятора, заключается в повышении уровня сопротивления, что приведет к снижению зарядного тока.
Соответственно, чем больше значение напряжения (стремится к 12В), тем меньше ток. Для нормальной работы АКБ желательно устанавливать определенную величину тока заряда (порядка 10% от емкости). В спешке велик соблазн изменить значение этого параметра на большее, однако, это чревато негативными последствиями для самой аккумуляторной батареи.
Что потребуется для изготовления АКБ?
Основные элементы простой конструкции: диод и обогреватель. Если правильно (последовательно) подключить их к АКБ, можно добиться желаемого – аккумуляторная батарея будет заряжена через 10 часов. Но любителям экономить электроэнергию такое решение может не подойти, потому как расход в этом случае составит порядка 10 кВт. Работа полученного устройства характеризуется невысоким КПД.
Основные элементы простой конструкции
Но для создания подходящей модификации придется несколько видоизменить отдельные элементы, в частности, трансформатор, мощность которого должна быть на уровне 200-300 Вт. При наличии старой техники, подойдет данная деталь из обычного лампового телевизора. Для организации системы вентиляции пригодится кулер, лучше всего, если он будет от компьютера.
Когда создается простое зарядное устройство для питания аккумулятора своими руками, в качестве основных элементов выступает еще транзистор и резистор. Чтобы наладить работу конструкции, понадобится компактный снаружи, но довольно вместительный корпус из металла, хороший вариант – короб от стабилизатора.
Схема простого зарядного устройства
В теории такого рода технику сможет собрать даже начинающий радиолюбитель, который ранее не сталкивался со сложными схемами.
Схема простого устройства для заряда аккумулятора
Основная трудность заключается в необходимости видоизменить трансформатор. При таком уровне мощности обмотки характеризуются невысокими показателями напряжения (6-7В), ток будет равен 10А. Обычно же требуется напряжение 12В или 24В, в зависимости от типоисполнения аккумуляторной батареи. Чтобы получить такие значения на выходе устройства, необходимо обеспечить параллельное соединение обмоток.
Поэтапная сборка
Самодельное зарядное устройство для питания аккумулятора автомобиля начинается с подготовки сердечника. Наматывание провода на обмотки выполняется с максимальным уплотнением, важно, чтобы витки плотно прилегали друг к другу, и не оставалось просветов. Нельзя забывать и об изоляции, которая ставится с интервалом в 100 витков. Сечение провода первичной обмотки – 0,5 мм, вторичной – от 1,5 до 3,0 мм. Если учесть, что при частоте 50 Гц 4-5 витков могут обеспечить напряжение 1В, соответственно, для получения 18В требуется порядка 90 витков.
Далее, подбирается диод подходящей мощности, чтобы выдерживать подаваемые на него в будущем нагрузки. Лучший вариант – генераторный диод автомобиля. Чтобы исключить риск перегрева, необходимо обеспечить эффективную циркуляцию воздуха внутри корпуса такого прибора. Если короб не перфорирован, следует позаботиться об этом до начала сборки. Кулер необходимо подключить к выходу зарядного устройства. Основная его задача – охлаждение диода и обмотки трансформатора, что учитывается при выборе участка для установки.
Смотрим видео, подробная инструкция по изготовлению:
Схема простого зарядного устройства для питания автомобильного аккумулятора содержит еще и переменный резистор. Для нормального функционирования зарядки необходимо получить сопротивление на уровне 150 Ом и мощность 5 Вт. Более прочих соответствует этим требованиям модель резистора КУ202Н. Можно подобрать отличный от этого вариант, но его параметры должны быть сходными по значению с указанными. Задача резистора заключается в регулировке напряжения на выходе устройства. Модель транзистора КТ819 также является наилучшим вариантом из ряда аналогов.
Оценка эффективности, себестоимость
Как видно, если необходимо собрать самодельное зарядное устройство для автомобильного аккумулятора, его схема более чем проста для реализации. Единственная трудность – компоновка всех элементов и установка их в корпус с последующим соединением. Но такую работу сложно назвать трудоемкой, а стоимость всех используемых деталей крайне мала.
Некоторые из деталей, а, быть может, и все наверняка найдутся у радиолюбителя дома, например, кулер от старого компьютера, трансформатор от лампового телевизора, старый корпус от стабилизатора. Что касается степени эффективности, то подобные устройства, собранные своими руками, не отличаются очень высоким КПД, однако, в результате все же справляются со своей задачей.
Смотрим видео, полезные советы специалиста:
Таким образом, крупных вложений в создание самодельной зарядки не требуется. Наоборот, все элементы стоят крайне мало, что выгодно оттеняет данное решение в сравнении с устройством, которое можно приобрести в готовом виде. Рассмотренная выше схема не отличается высокой эффективностью, но ее главный плюс – заряженный аккумулятор авто, хоть и спустя 10 часов. Можно усовершенствовать этот вариант или рассмотреть множество других, предлагаемых для реализации.
Самодельное зарядное устройство для литий-ионных аккумуляторов 18650
Аккумуляторы играют важную роль в любом механизме, работающим не от сети. Перезаряжаемые аккумуляторные батареи стоят довольно дорого, из-за того, что вместе с ними нужно приобретать зарядное устройство. В аккумуляторных батареях используются разные комбинации проводниковых материалов и электролитов – свинцово-кислотные, никель-кадмиевые (NiCd), никель-металлгидридные (NiMH), литий-ионные (Li-ion), литий-ионполимерные (Li-Po).
Я использую литий-ионные аккумуляторы в своих проектах, поэтому решил сделать зарядку для литиевых аккумуляторов 18650 своими руками, а не покупать дорогое, так что приступим.
Шаг 1: Видео
В видео показана сборка зарядного устройства.
Ссылка на youtube
Шаг 2: Список электрокомпонентов
Список компонентов, необходимых для сборки зарядного устройства для аккумуляторных батареек 18650:
Шаг 3: Список инструментов
Для работы вам будут нужны следующие инструменты:
Теперь, когда все нужные инструменты и компоненты подготовлены к работе, займемся модулем ТР4056.
Шаг 4: Модуль зарядного устройства Li-io аккумуляторов на основе чипа ТР4056
Немного подробнее об этом модуле. На рынке представлены два варианта этих модулей: с защитой аккумулятора и без нее.
Коммутационная плата, содержащая схему защиты, осуществляет контроль напряжения с помощью фильтра цепи питания DW01A (интегральная схема защиты батареи) и FS8205A (N-канальный транзисторный модуль). Таким образом, коммутационная плата содержит три интегральных схемы (TP4056+DW01A+FS8205A), в то время как модуль зарядного устройства без защиты батареи содержит лишь одну интегральную схему (TP4056).
TP4056 – модуль заряда одноэлементных Li-io аккумуляторов с линейным зарядом постоянного тока и напряжения. Корпус SOP и малое число внешних компонентов делают этот модуль прекрасным вариантом для использования в самодельных электроприборах. Он заряжает через USB так же хорошо, как через обычный блок питания. Распиновка модуля TP4056 прилагается (рис.2), как и график цикла зарядки (рис.3) с кривыми постоянного тока и постоянного напряжения. Два диода на коммутационной плате показывают текущий статус заряда – заряд, прекращение заряда и тд (рис.4).
Чтобы не повредить аккумулятор, заряд 3,7 В литий-ионных аккумуляторов должен осуществляться при значении постоянного тока 0,2-0,7 от их емкости, пока выходное напряжение не достигнет 4,2 В, после чего заряд будет осуществляться постоянным напряжением и постепенно снижающимся (до 10% от первоначального значения) током. Мы не можем прервать заряд при напряжении 4,2 В, так как уровень заряда будет 40-80% от полной емкости аккумулятора. За этот процесс отвечает модуль TP4056. Еще один важный момент – резистор, соединенный с выводом PROG, определяет зарядный ток. В модулях, представленных на рынке, обычно с этим выводом соединен 1,2 КОм резистор, что соответствует зарядному току 1А (рис.5). Чтобы получить другие значения зарядного тока, можно попробовать ставить другие резисторы.
Даташит модуля ТР4056
DW01A – интегральная схема защиты батареи, на рис.6 показана обычная схема подключения. Полевые МОП-транзисторы М1 и М2 соединены внешне интегральной схемой FS8205A.
Даташит DW01A
Даташит FS8205A
Эти компоненты установлены на коммутационной плате модуля заряда литий-ионных батарей TP4056, ссылка на который есть в Шаге 2. Мы должны сделать только две вещи: дать напряжение в диапазоне 4-8 В на входной разъем, и соединить полюса аккумулятора и контактами + и – модуля TP4056.
После этого продолжим сборку зарядного устройства.
Шаг 5: Схема проводки
Чтобы завершить сборку электрокомпонентов, спаяем их в соответствии со схемой. Я приложил схему в программе Fritzing и фото физического соединения.
- + контакт разъема питания соединяем с одним из контактов выключателя, а – контакт разъема питания соединяем с пином GND стабилизатора 7805
- Второй контакт выключателя соединяем с пином Vin стабилизатора 7805
- Устанавливаем три конденсатора 100 нФ параллельно между Vin и GND пинами стабилизатора напряжения (для этого используйте макетную плату)
- Устанавливаем конденсатор 100 нФ между пинами Vout и GND стабилизатора напряжения (на макетной плате)
- Соедините Vout пин стабилизатора напряжения с IN+ пином модуля TP4056
- Соедините пин GND стабилизатора напряжения с IN- пином модуля TP4056
- Соедините + контакт батарейного отсека с B+ пином модуля TP4056, а – контакт батарейного отсека соедините с В- пином модуля TP4056
На этом соединения завершены. Если вы используете 5 В блок питания, пропускайте все пункты с подключениями к стабилизатору напряжения 7805, и подключайте + и – блока напрямую к IN+ и IN- пинам модуля TP4056 соответственно.
Если вы будете использовать 12В блок питания, при прохождении тока 1А стабилизатор 7805 будет нагреваться, это можно исправить теплоотводом.
Шаг 6: Сборка, часть 1: прорезаем отверстия в корпусе
Для того, чтобы правильно уместить все электрокомпоненты в корпусе, в нем нужно прорезать отверстия:
- Лезвием ножа отметьте на корпусе границы батарейного отсека (рис.1).
- Горячим ножом прорежьте отверстие по сделанным меткам (рис.2 и 3).
- После прорезания отверстия, корпус должен выглядеть как на рис.4.
- Отметьте место, где будет находиться USB-разъем модуля TP4056 (рис.5 и 6).
- Горячим ножом прорежьте в корпусе отверстие для USB-разъема (рис. 7).
- Отметьте места на корпусе, где будут находиться диоды модуля TP4056 (рис. 8 и 9).
- Горячим ножом прорежьте отверстия под диоды (рис. 10).
- Таким же образом сделайте отверстия под разъем питания и выключатель (рис.11 и 12)
Шаг 7: Сборка, часть 2: устанавливаем электрокомпоненты
Следуйте инструкции, чтобы установить компоненты в корпусе:
- Установите батарейный отсек так, чтобы монтажные точки были снаружи отсека/корпуса. Клеевым пистолетом приклейте отсек (рис.1).
- Установите на место модуль TP4056 так, чтобы USB0разъем и диоды попали в соответствующие отверстия, зафиксируйте термоклеем (рис.2).
- Установите на место стабилизатор напряжения 7805, зафиксируйте термоклеем (рис.3).
- Установите на свои места разъем питания и выключатель, зафиксируйте их термоклеем (рис.4).
- Расположение компонентов должно выглядеть так же, как на рис.5.
- Нижнюю крышку закрепите на месте винтами (рис.6).
- Позже я закрыл неровности, оставшиеся от горячего ножа, черной изолентой. Также их можно сгладить наждачкой.
Завершенное зарядное устройство показано на рис.7. теперь его нужно испытать.
Шаг 8: Испытание
Установите разряженный аккумулятор в зарядное устройство. Включите питание в разъем 12В или USB. Красный диод должен моргать, это значит, что идет процесс заряда.
Когда заряд будет завершен, должен загореться синий диод.
Прикладываю фото зарядного устройства в процессе заряда и фото с заряженным аккумулятором.
На этом работа завершена.
Как сделать домашнее зарядное устройство 12 В
Что такое зарядное устройство?
Зарядное устройство для аккумуляторов — это простое электронное устройство, которое используется для передачи энергии вторичному элементу или аккумулятору, проталкивая через него электрический ток. Они относительно недороги и их легко построить дома. Итак, в этой статье мы рассмотрим пошаговую инструкцию, как сделать зарядное устройство 12 В. Так что давайте перейдем к делу.
Это множество вариантов зарядных устройств, доступных на сегодняшнем рынке, таких как импульсные зарядные устройства, устройства непрерывной зарядки и быстрые зарядные устройства и т. Д.Но в целом все зарядные устройства имеют одинаковую принципиальную схему. Понижающий трансформатор вместе с конденсатором класса X, подключенным последовательно для понижения высокого входного переменного тока до полезного уровня, и мостовой выпрямитель для преобразования сигнала переменного тока в пульсирующий постоянный ток. Вы также можете использовать сглаживающий конденсатор на выходе выпрямителя, чтобы избавиться от шума.
JLCPCB — ведущая компания по производству прототипов печатных плат в Китае, предоставляющая нам лучший сервис, который мы когда-либо испытывали (качество, цена, обслуживание и время).Мы настоятельно рекомендуем заказывать печатные платы в JLCPCB, все, что вам нужно сделать, это просто загрузить файл Gerber и загрузить его на веб-сайт JLCPCB после создания учетной записи, как указано в видео выше, посетите их веб-сайт, чтобы узнать больше! .
[спонсор_1]Компоненты оборудования
Для сборки этого проекта вам понадобятся следующие детали
[inaritcle_1]Свинцово-кислотный аккумулятор 12 В
Полезные шаги
Ниже приведены инструкции по изготовлению зарядного устройства на 12 В
.1) Сделайте мостовой выпрямитель, подключив 4 диода 1N4007 в следующей конфигурации.
2) Припаяйте плюсовые и минусовые выводы мостового выпрямителя ко вторичной обмотке трансформатора без ТН
.3) Обрежьте лишние выводы мостового выпрямителя.
4) Припаяйте один конец конденсатора X-класса к положительной клемме источника переменного тока, а другой конец — к первичной обмотке трансформатора. Припаяйте отрицательную клемму питания к первичной обмотке трансформатора.
5) Припаяйте зажимы типа «крокодил» к клеммам мостового выпрямителя.
6) Подключите выходные клеммы зарядного устройства к клеммам разъема питания постоянного тока и проверьте цепь.
Зарядка аккумулятора (с включенным предохранителем)
Аккумулятор не заряжается (предохранитель отключен)
[inaritcle_1]Рабочее объяснение
Работа этой схемы довольно проста. Сигнал 220 В переменного тока действует как вход для схемы зарядного устройства. этот сигнал переменного тока проходит через конденсатор номиналом X 1 мкФ, напрямую подключенный к линии переменного тока под напряжением, чтобы снизить напряжение переменного тока. Выходной сигнал проходит через понижающий трансформатор без СТ.
Выходной сигнал переменного тока затем подается на схему мостового выпрямителя, выполненную с использованием четырех диодов 1N4007.Выход постоянного тока мостового выпрямителя затем используется для зарядки любой свинцово-кислотной батареи 12 В с помощью зажимов для батареи.
Приложения
- Обычно используется для зарядки свинцово-кислотных аккумуляторов 12 В в качестве резервного источника питания.
См. Также: Контроллер двигателя DIY с H-мостом | Схема Joule Thief | Домашняя автоматизация с использованием NodeMCU ESP266 и Firebase
DIY Зарядное устройство для солнечных батарей для литий-ионных аккумуляторов 18650
В этом проекте «сделай сам» я покажу вам, как спроектировать и построить простое, но эффективное зарядное устройство для солнечных батарей для аккумуляторов 18650.Используя этот проект, вы можете заряжать две литий-ионные батареи 18650 напрямую от солнечной батареи без какого-либо сетевого адаптера.
Введение
Потребность в устойчивом образе жизни привела к увеличению использования возобновляемых источников энергии. Если не брать в расчет показатели эффективности, солнечная энергия является одной из удобных альтернатив (по сравнению с другими возобновляемыми источниками энергии, такими как ветер) электроснабжению.
В наши дни большие солнечные фермы устанавливаются на акрах бесплодных земель во многих странах.Но также становятся популярными небольшие солнечные электростанции, например, на крышах отдельных зданий и возле небольших жилых домов.
Установка солнечной электростанции. будь то большой или маленький, это довольно просто. Установите массив солнечных панелей на крыше, подключите их к контроллеру заряда солнечных батарей и зарядите батареи. От аккумуляторов можно управлять любыми сетевыми приборами, используя соответствующие инверторы.
В качестве новичка в солнечном проекте я разработал очень простое зарядное устройство для солнечных батарей для зарядки литий-ионных аккумуляторов 18650.Используя эти аккумуляторы, вы можете заряжать свои мобильные телефоны, планшеты или использовать аккумуляторы в светодиодных лампах, аварийном освещении и т.д. это зарядное устройство DIY для солнечных батарей для 18650. Все компоненты, которые я перечислю в следующем разделе, очень легко приобрести и легко доступны в местных магазинах электроники (вы также можете приобрести их в Интернете).
Необходимые компоненты
- Мини-солнечная панель 6 В — 100 мА
- 2 литий-ионных аккумулятора 18650
- Держатели для аккумуляторов 18650
- TP4056 Зарядный модуль для литий-ионных аккумуляторов с защитой
- Вход от 1 В до 5 В с шагом выхода 5 В. повышающий преобразователь (повышающий преобразователь)
- 1N4007 PN Junction Diode
- Switch (Push to ON и Push to OFF)
- Соединительные провода
Для получения дополнительной информации о модуле зарядного устройства для литий-ионных аккумуляторов TP4056 прочтите « TP4056 Lithium Зарядное устройство для ионных аккумуляторов “.
Как настроить зарядное устройство на солнечной батарее для 18650?
Сначала я объясню подключения и пошаговую настройку зарядного устройства на солнечной батарее для 18650. Затем мы разберемся с принципом работы.
Что касается соединений, мини-солнечная панель имеет два провода, идущие от нее. Один красный, это положительный провод, а другой черный (или коричневый в моем случае), это отрицательный провод.
Теперь возьмем модуль зарядного устройства для литий-ионных аккумуляторов TP4056 с защитой аккумулятора.Со стороны входа он имеет два соединения с именами IN + и IN-. Возьмите красный провод от солнечной панели и подключите его к аноду диода 1N4007.
Подключите катод диода к клемме IN + модуля TP4056 и напрямую подключите черный провод солнечной панели к клемме IN- TP4056. На этом раздел ввода завершен.
На выходной стороне TP4056 есть четыре соединения с именами B +, B-, OUT + и OUT-. Возьмите две литий-ионные батареи 18650 с держателями и подключите их параллельно i.е. обе положительные клеммы батарей являются общими, а обе отрицательные — общими.
Подключите общий положительный полюс батарей к B + TP4056. Возможно, вам придется припаять провода к плате литий-ионного зарядного устройства. Аналогичным образом подключите общий отрицательный полюс батарей к B- TP4056.
Последним шагом сужения является подключение выхода TP4056 к модулю повышающего преобразователя 5 В. Модуль повышающего преобразователя имеет две входные клеммы с именами IN + и IN-.Подключите OUT + TP4056 к IN + модуля Boost Converter и OUT- к IN- соответственно.
Вы можете использовать переключатель между TP4056 и повышающим преобразователем, чтобы вы могли включать или выключать выход. Я приклеил всю установку к корпусу держателя батареи с переключателем в центре и портом USB на краю.
Принцип DIY солнечного зарядного устройства для 18650
Солнечная панель, используемая в этом проекте, представляет собой небольшую панель на 6 В с небольшим выходом 100 мА. Выходная мощность этой солнечной панели не будет постоянной 6 В, но может колебаться от 5 В до 7.5V (согласно его паспорту).
Это напряжение подается на вход модуля зарядки литий-ионной батареи TP4056, который в этом сценарии действует как контроллер заряда от солнечной батареи. Входной сигнал TP4056 может находиться в диапазоне от 4 В до 8 В (это диапазон выходной мощности солнечной панели).
TP4056 затем заряжает аккумулятор от самой солнечной энергии. Если вы хотите только зарядить батареи, этого достаточно. Но поскольку в нашем проекте также необходимо заряжать мобильный телефон, нам нужен выход 5 В, а выход литий-ионных аккумуляторов 18650 — всего 3.7В.
На помощь приходит повышающий преобразователь. Повышающий преобразователь, который я использовал, представляет собой повышающий преобразователь входного напряжения 1-5 В в выходное напряжение 5 В, то есть он принимает входное напряжение от 1 В до 5 В и выдает постоянный выходной сигнал 5 В. Кроме того, этот повышающий преобразователь может поддерживать ток до 1 А, поэтому зарядка мобильного телефона не будет такой медленной.
Я использовал этот проект для зарядки своего мобильного телефона, а также для включения платы Arduino.
аккумуляторов — 18650 4s аккумулятор своими руками [Как зарядить, как собрать?]
Я собираю портативный динамик с bluetooth.Тем не менее, у меня есть несколько вопросов по поводу сборки моей первой аккумуляторной батареи 18650. Имею 4 шт Panasonic незащищенных NCR18650B 18650 3.7V 3400mAh. Моя цель — собрать батарею 4s 18650 с этими батареями, которая должна: — находиться внутри портативной колонки — Полностью защищен — Сейф
У меня вопрос, как мне спроектировать этот аккумулятор? У меня есть идея, но я хочу знать, хороший ли это способ ее реализовать ?: У меня есть и другие вопросы: Во время моих поисков в Интернете некоторые люди используют сбалансированную зарядку, нужно ли ее использовать в моем случае? Если да, то как? Нужно ли мне использовать адаптер питания или адаптер зарядного устройства для литий-ионных аккумуляторов?
Спасибо за вашу помощь в будущем Сердечно,
Итак, я повторяю, если я правильно понял, Плата BMS предназначена для защиты элементов от перезаряда, перегрузки, перегрузки по току, защиты от короткого замыкания, верно? Но чтобы продлить срок службы батарейного блока, нужен балансный заряд, верно? Какую доску вы можете мне посоветовать для защиты и балансировки батарейного блока? (У меня Panasonic незащищенный NCR18650B 18650 3.7 В 3400 мАч) Нашел на алиэкспресс плату, как думаете?
Или у меня есть другая идея, как вы думаете, если я вставлю в динамик сбалансированное зарядное устройство, возможно ли, чтобы провода всегда оставались подключенными к зарядному устройству и цепям динамиков? Обязательно ли иметь BMS для защиты моих батарей, потому что они изначально незащищены?
Еще вопрос, Не могли бы вы посоветовать мне надежный BMWS для защиты моего аккумуляторного блока? Я здесь не для того, чтобы сэкономить, безопасность рюкзака — мой приоритет.
Я проверил существующие на рынке BMS, но заметил, что защита от чрезмерного разряда слишком мала по сравнению со спецификациями моих батарей. Обычные bms в Интернете сокращают ток примерно на 2,55, это слишком мало для моих батарей. На самом деле минимальное напряжение моих батарей 2,75 В. Итак, я нашел новую BMS с функцией начисления баланса: ссылка
У меня несколько вопросов, я сделал схему подключения и хочу узнать, не ошибался ли он: Однако несколько вопросов остаются у меня неясными: Положительный кабель и отрицательный кабель — это одни и те же кабели для зарядки аккумуляторной батареи и ее использования? На схеме ( Выход / Вход положительный + и Выход / Вход отрицательный — ) Могу ли я использовать аккумулятор во время зарядки? Мне это кажется странным, потому что мне интересно, какая интенсивность и напряжение подается в электрическую цепь динамика bluetooth.На диаграмме (Интенсивность: A? Номинальное напряжение: В?) Те из адаптера или аккумулятора?
DIY модуль зарядки аккумулятора 3,7 В Lipo защита и повышающий преобразователь 5 В
Зарядное устройство, защита и наддув своими рукамиОбычно каждый раз, когда у меня есть проект с небольшой батареей, которую я тоже хочу зарядить, я использую небольшой зарядный модуль с USB-разъемом. Но все остальные цифровые компоненты обычно работают при 5 В, а батарея — 3,7 В. Итак, для этого я добавляю еще один небольшой модуль, повышающий преобразователь, который дает мне 5 В.Обычно нам также нужна защита аккумулятора, чтобы он не перезарядился, не разрядился или не имел короткого замыкания. Я добавил все эти микросхемы на одну печатную плату, так что теперь мы можем заряжать LiPo или литий-ионный аккумулятор 3,7 В, защищать его, а затем иметь усиленный выход на 5 В или 12 В. Посмотрим, как я это сделал.
ЧАСТЬ 1 — Что нам нужно
В первую очередь нам понадобится разработанная мной печатная плата. Перейдите ниже и получите первую версию или в моем магазине и получите вторую версию (спасибо за поддержку).Когда у вас есть GERBER для печатной платы, отправьте их в JLCPCB и получите базу. Затем вам понадобятся 4 базовых ИС для зарядки, защиты, включения выхода и ИС повышающего преобразователя. Остальное — это просто резисторы smd, конденсаторы, светодиоды и тумблер. Да, и вам также понадобится разъем USB micro B. Смотрите список заполнения ЗДЕСЬ
ЧАСТЬ 2 — Схема
Ниже представлена схема для версии V1.0. Помните, что эта версия работает нормально , но имейте в виду : катушка небольшая, поэтому она будет иметь максимальный выходной ток 600 мА.Чтобы переключиться с 5 В на 12 В или наоборот, сначала необходимо отключить аккумулятор от входа, иначе ИС повышающего преобразователя выйдет из строя. Итак, сначала выберите выходное напряжение и затем подключите аккумулятор.
У вас есть значения каждого резистора, конденсатора, катушки индуктивности на схеме. Используйте те же значения, чтобы получить тот же результат. Помните, что Rprog установит зарядный ток для аккумулятора.
ЧАСТЬ 3.1 — Компоненты защиты припоя
Первым шагом при установке этой печатной платы является припайка всех микросхем зарядки аккумуляторов.Это TP4056, DW01A и FS8205A. Также припаиваем конденсатор C9, резисторы R10 и R11 вместе с красным и зеленым светодиодами. Припаяйте резистор Rprog номиналом 2 кОм, чтобы ограничить ток зарядки до 580 мА. См. Техническое описание TP4056 здесь, чтобы узнать больше об этом. Наконец, припаиваем резисторы R12 и R8, а также конденсатор C6. Не забудьте добавить разъем USB и конденсатор C9 емкостью 10 мкФ на входе, и зарядная часть должна теперь работать.
Для проверки подключите батарею 3,7 В к контактам B + и B-.Затем подключите usb-коннектор 5V от ПК или зарядного устройства. Красный светодиод загорится, и аккумулятор будет заряжаться. Когда аккумулятор полностью заряжен, должен загореться зеленый светодиод, и процесс зарядки будет остановлен. В это время вы также можете проверить защиту от перенапряжения, разрядки и короткого замыкания. Если это сработает, мы можем продолжить пайку части повышающего преобразователя.
ЧАСТЬ 3.2 — Компоненты повышения припоя
Хорошо, теперь, когда процесс зарядки работает, сначала извлеките аккумулятор и USB-кабель , а затем мы можем припаять остальные компоненты.Припаяйте ИС повышающего преобразователя MT3608 и необходимые компоненты, такие как катушка, диод и резисторы установки напряжения. Не забудьте добавить ползунковый переключатель и выходной конденсатор C3 емкостью 22 мкФ. Теперь вы должны проверить, работает ли оно.
ВАЖНО:
● Вы не можете изменить напряжение с 5 В на 12 В при подключенной батарее.
● Итак, сначала извлеките батарею, а затем выберите желаемое напряжение.
● Когда напряжение установлено на 5 В или 12 В, вы можете подключить обратно аккумулятор
Выполнив эти 3 шага, вы можете проверить выходную мощность.Я использовал свой блок питания в качестве входного напряжения, поэтому мы могли изменить входное напряжение и провести тесты. В следующей части проведем тесты и все.
ЧАСТЬ 4.1 — Тестовый выход
Пришло время провести несколько тестов нашей печатной платы. Необходимо провести 4 основных теста :
● Если выход 5 В и 12 В работает
● Понизьте напряжение ниже 2,6 В и проверьте защиту от чрезмерной разрядки.
● Подключите аккумулятор и кабель USB. Проверьте, останавливается ли процесс зарядки на 4.2V
● Во время работы закоротите выход и посмотрите, не сбился ли выход
Хорошо, поэтому для проверки выхода 5V и 12V вы должны это сделать. Сначала убедитесь, что аккумулятор и USB-кабель не подключены, поэтому печатная плата полностью отключена. Затем установите переключатель на 5 В. Подключите аккумулятор и измерьте выход мультиметром. Оно должно быть около 5,1 В. Теперь, что очень важно, выньте аккумулятор и переключитесь на 12 В. Подключите обратно аккумулятор и измерьте мощность. Должно быть около 12.5В.
ЧАСТЬ 4.2 — Тест короткого замыкания
Чтобы проверить защиту от короткого замыкания, просто подключите к контактам B + и B- аккумулятор (или источник питания, настроенный на напряжение от 3,7 В до 4,2 В). Проверьте выход, 5 В или 12 В, и подключите мультиметр к выходу, чтобы мы могли видеть, упадет ли напряжение. Затем перемыть провод и замкнуть выход. Выход должен упасть до 0 В и оставаться там, даже если вы отсоедините провод. Выход будет включен еще раз, только если вы подключите USB-кабель, чтобы TO4056 подал сигнал, или если вы удалите аккумулятор и снова подключите его.Проверьте и это. Если это сработает, значит, защита от короткого замыкания в порядке.
ЧАСТЬ 4.3 — Испытание на избыточный разряд
Для этого теста вам понадобится мультиметр и источник переменного тока. Подключите питание к контактным площадкам B + и B- с напряжением не более 4,2 В. Измерьте выход мультиметром и посмотрите, 5 В или 12 В. Затем начните снижать входное напряжение с помощью регулируемого источника питания tge. Вы должны увидеть, что taht ниже 2,6 В, выход будет отключен, и он перейдет в 0 В. Выход будет включен еще раз, только если вы подключите USB-кабель, чтобы TO4056 подал сигнал, или если вы удалите аккумулятор и снова подключите его.Проверьте и это. Если это сработает, значит, защита от переразряда в порядке.
ЧАСТЬ 4.4 — Тест сверх заряда
Для этого теста подключите батарею 3,7 В к контактам B + и B-. Подключите мультиметр к таким же колодкам. Затем подключите USB-кабель, чтобы начался процесс зарядки и загорелся красный светодиод. Через некоторое время красный светодиод погаснет, а зеленый загорится. В этот момент вы должны убедиться, что напряжение батареи составляет 4,2 В. Также отсоедините кабель USB и проверьте еще раз, если батарея 4.2В. Это означает, что срабатывает защита от перезарядки, и IC всегда останавливает процесс зарядки при достижении 4,2 В.
ЧАСТЬ 5- См. Видеоурок
Ниже вы найдете полное руководство со всеми тестами. Не забудьте заглянуть в мой магазин, если вы хотите получить версии V2.1 или V3.0 всего за несколько долларов и тем самым поддержать мою работу. V1.0 всегда будет бесплатным. Подумайте о поддержке моих видео на PATREON. Спасибо!
Помогите мне, поделившись этим постом
Цепь зарядного устройства
| Полный проект DIY Electronics
Большинство зарядных устройств прекращают зарядку аккумулятора, когда он достигает максимального зарядного напряжения, установленного схемой.Эта схема зарядного устройства для аккумулятора 12 В заряжает аккумулятор при определенном напряжении, то есть напряжении поглощения, и после достижения максимального напряжения зарядки зарядное устройство изменяет выходное напряжение на напряжение холостого хода для поддержания аккумулятора при этом напряжении. Напряжение абсорбции и плавающее напряжение зависят от типа батареи.
Для этого зарядного устройства установлены напряжения для герметичной свинцово-кислотной (SLA) батареи 12 В, 7 Ач, для которой напряжение поглощения составляет от 14,1 В до 14,3 В, а плавающее напряжение — 13.От 6 до 13,8 В. Для безопасной работы и во избежание перезарядки аккумулятора напряжение поглощения выбрано как 14,1 В, а плавающее напряжение выбрано как 13,6 В. Эти значения должны быть установлены в соответствии с указаниями производителя батареи.
Схема зарядного устройства 12 В
Рис. 1: Схема зарядного устройства 12 В для батареиПринципиальная схема абсорбирующего и поплавкового зарядного устройства на 12 В показана на рис. 1. Он построен на понижающем трансформаторе X1, регулируемом регуляторе напряжения LM317 (IC1), компараторе операционного усилителя LM358 (IC2). и несколько других компонентов.Используемый в этой схеме первичный трансформатор 230 В переменного тока и вторичный трансформатор 15–0–15 В, 1 А понижают сетевое напряжение, которое выпрямляется диодами D1 и D2 и сглаживается конденсатором C1. Это напряжение подается на вход LM317 для регулирования.
Базовая схема представляет собой регулируемый источник питания, использующий LM317, с управлением на выходе путем изменения сопротивления на регулировочном штыре 1. Для LM317 требуется хороший радиатор. LM358 — это усилитель двойного действия, который используется здесь для контроля перезарядки аккумулятора.Конденсатор C4 должен быть как можно ближе к выводу 1 IC2. Перемычка J1 используется для калибровки (настройки). При установке напряжения зарядки снимите перемычку и после калибровки снова подключите ее.
Для начальной настройки снимите перемычку J1, выключите S2, включите S1 и отрегулируйте потенциометр VR2, чтобы получить 13,6 В в контрольной точке TP2. Отрегулируйте потенциометр VR3 так, чтобы светодиод 2 начал светиться. Настройте потенциометр VR1 на 0,5 В (разница 14,1 В и 13,6 В) в контрольной точке TP1. Настройте VR2 на 14,1 В в контрольной точке TP2.
С этими настройками TP2 должен показывать 14,1 В при низком напряжении в контрольной точке TP3 и 13,6 В при высоком напряжении в контрольной точке TP3. Подключите перемычку J1. Теперь зарядное устройство готово к использованию. Подключите заряжаемый аккумулятор 12 В (BUC), соблюдая полярность, к CON2. Включите S2; один из светодиодов вне LED2 и LED3 загорится (скорее всего, это будет LED2). Если ни один из них не загорается, проверьте соединения; батарея могла быть разряжена. Включите S1 для зарядки. Полностью заряженный аккумулятор будет обозначен свечением светодиода LED3.
Не беспокойтесь, если вы забудете выключить зарядное устройство. Зарядное устройство находится на плавающем напряжении (13,6 В), и его можно держать в этом режиме зарядки вечно.
Строительство и испытания
Односторонняя печатная плата для цепи абсорбирующего и плавающего зарядного устройства 12 В батареи показана на рис. 2, а схема ее компонентов — на рис. 3. Соберите схему на печатной плате, за исключением трансформатора X1 и заряжаемой батареи (BUC).
Рис. 2: Печатная плата схемы зарядного устройства 12В Рис.3: Компонентная компоновка печатной платы Загрузите печатную плату и компоновку компонентов в формате PDF: нажмите здесьПоместите печатную плату в небольшую коробку. Закрепите клемму аккумулятора на передней части коробки для подключения BUC. Подключите переключатели S1 и S2, потенциометры VR1 — VR3 и т. Д. На корпусе коробки.
Банкноты EFY
- Выключите S2 или отсоедините клеммы аккумулятора, чтобы избежать ненужной разрядки аккумулятора, когда он не заряжается, то есть когда S1 выключен.
- Подключите аккумулятор, соблюдая полярность.
- Корпус IC1 не должен быть заземлен, поэтому используйте изоляцию.
Фаяз Хассан — менеджер металлургического завода в Висакхапатнам, Висакхапатнам, и интересуется проектами микроконтроллеров, мехатроникой и робототехникой.
Эта статья была впервые опубликована 26 июня 2016 г. и обновлена 13 августа 2019 г.
Вот как я сделал свою собственную станцию для зарядки аккумуляторов своими руками
Мне, как и многим из вас, надоели бесконечные зарядные устройства и кабели.Беспорядок из проводов, который всегда кажется запутанным, и в итоге он всегда выглядит как Медуза в день плохой прически.
Я пробовал разные вещи на протяжении многих лет, я пытался спрятать их в ящиках, пристегивать их на липучке к стене или под столом, это всегда приводило к одному и тому же беспорядку. Также они имеют тенденцию занимать много места.
Теперь я не хочу сказать, что это лучшее решение, так как я уверен, что кто-то сделал что-то более аккуратное (и если у вас есть какие-либо идеи, прокомментируйте ниже), но для меня эта установка работает хорошо и не стоит дорого.
В прошлом я видел различные установки пегборда и опробовал мини-версию перед тем, как использовать гитарный педалборд, но это первый раз, когда я добился успеха со всеми зарядными устройствами.
Основание должно было быть большим и прочным, вес не был проблемой, поэтому я купил стальную перфорированную доску Vonhaus на Amazon, она была в комплекте из трех штук, поэтому я отправил две другие друзьям, а не выбрасывал их. далеко. В конце концов, делиться заботой.
Я знал, что после некоторых измерений мне придется использовать более длинные кабельные стяжки; Я купил 300-миллиметровые стяжки, чтобы они подходили к более широким зарядным устройствам.
Я также заказал удлинитель на 8 групп с портами USB и выключателем (это позволяет выключить всю плату на плате, а не от сети, что намного удобнее)
Чтобы максимально использовать пространство на плате, я заказал несколько коротких кабелей IEC C7 (0,5 м), некоторые с прямыми концами, а некоторые с прямыми углами — это было сделано для того, чтобы зарядные устройства были ближе к силовому блоку.
После того, как они прибыли, нужно было разложить все на плоскости и придумать, как это сделать лучше всего.Я знал, что хочу повесить это на конце стеллажа, чтобы занимать наименьшую площадь (и область, которая не использовалась). Повесить его таким образом также означало, что я мог использовать полки для хранения больших батарей Profoto, когда они заряжались.
Разложив все это, я начал продевать стяжки и закреплять зарядные устройства, когда вы затягиваете их достаточно плотно, для большинства блоков требуется только одна стяжка, для более крупных зарядных устройств Profoto требовалось два, чтобы они не перекручивались.
Чтобы привести в порядок плату, я протолкнул лишний кабель питания через отверстия на плате и закрепил их более мелкими стяжками, чтобы затянуть лишний.
И вуаля, пара висящих винтов, и вот она, плата зарядного устройства, которую можно включать и выключать, занимая место, которое я никогда не использовал, и наконец взяло это змеиное гнездо под контроль!
А тем, кто спрашивает, как я с ним путешествую? Я не. Он слишком большой и слишком бесполезный, я использую несколько USB-зарядных устройств от Nitecore для всех своих камер и имею отдельные дорожные зарядные устройства для своего комплекта Profoto.
Путешествие этим путем означает, что я могу взять с собой зарядные устройства Profoto, биты Nitecore и концентратор Anker USB C, а не все кабели IEC и массивное удлинение.Это в конечном итоге становится немного дороже, но вес, который я экономлю, не таща много кабелей, более чем компенсирует это. Вот мои дорожные зарядные устройства для фотоаппаратов, как видите, они не намного больше, чем аккумулятор, и очень легкие.
Я использовал этот метод для путешествий в течение многих лет, так как легкость — это главное в игре!
Об авторе
Том Барнс — фотограф-самоучка из Лондона, Англия. Вы можете найти больше его работ на его веб-сайте и связаться с ним через Instagram, Twitter и Facebook
Самое простое зарядное устройство для литий-полимерных аккумуляторов своими руками — схема
Вот самое простое зарядное устройство, которое вы можете найти.
Вы даже можете заменить подстроечный потенциометр некоторыми фиксированными резисторами, но это требует времени на настройку, если у вас нет более дорогих прецизионных резисторов. (должно быть более 1%)
Идея довольно проста, установить регулятор на необходимое максимальное напряжение заряда, здесь 4,2В.
Последовательный резистор ограничивает максимальный ток, подаваемый на батарею.
Обратите внимание, что это не источник постоянного тока.Ток будет максимальным при минимальном напряжении батареи. (то есть 3 В мин. для липо)
Затем по мере зарядки аккумулятора ток будет постепенно уменьшаться.
На самом деле это будет похоже на зарядку конденсатора.
Зарядка с такой конструкцией займет больше времени, чем зарядка с постоянным током, но не так много, как можно было бы ожидать.
Если вы заряжаете липо более высоким током, это означает, что шаг заряда постоянным током будет короче, но тогда шаг постоянного напряжения будет длиннее…
Так что выигрыш между зарядкой на 0,5С или 1С на практике очень мал.R1, R2, R3 могут составлять 1/4 Вт.
Вы можете дополнительно использовать многооборотный триммер для R3, чтобы повысить точность.
R4 должен иметь мощность 2 Вт для максимального заряда от 800 мА до 1,5 А. (см. значения ниже для других напряжений заряда)
(примечание R4 находится в нижнем диапазоне 0-10 Ом, а не кОм)
Зарядный ток ниже 800 мА можно обеспечить с помощью резистора 1 Вт.
1-элементное зарядное устройство 4,2 В: (мин. Пост. Ток = 6 В)
Оставьте компоненты, как показано.
Отрегулируйте R3 до 4,20 вольт без нагрузки.
Значения R4 для установки максимального тока заряда:
20004 9000 ячеек Зарядное устройство 8,4 В: (Мин. пост. ток = 10,5 В)1,2 Ом 2 Вт = 1 А
1,8 Ом 2 Вт = 1,5 А
2,2 Ом 1 Вт = 550 мА
Отрегулируйте R3, пока не достигнете 8,40 В без нагрузки.
Значения R4 для установки максимального тока заряда:
2.2 Ом 3 Вт = 1 А
1,8 Ом 5 Вт = 1,33 А
4,7 Ом 2 Вт = 550 мА
3-элементное зарядное устройство 12,6 В: (пост. Ток мин. = 15 В)
на Изменить R 220 Ом.
Отрегулируйте R3 до 12,60 вольт без нагрузки.
Значения R4 для установки максимального тока заряда:
3,3 Ом 5 Вт = 1 А
2,7 Ом 5 Вт = 1,33 А
6,8 Ом 2 Вт = 500 мА
4 элемента.Зарядное устройство на 8 В: (постоянный ток мин. = 18,5 В)
Замените R2 на резисторы в серии: 2,2 кОм + 330 Ом.
Измените R3 на 220 Ом.
Отрегулируйте R3 до 16,80 В без нагрузки.
Значения R4 для установки максимального тока заряда:
4,7 Ом 5 Вт = 1 А
3,3 Ом 10 Вт = 1,5 А
10 Ом 3 Вт = 500 мА
Три важных замечания по поводу этого схема:
Обратите внимание, что +1,75 довольно мало по сравнению с иногда рекламируемым падением напряжения 3 В.-Вы ДОЛЖНЫ использовать радиатор и, возможно, небольшой вентилятор.Чем больше количество ячеек, тем оно должно быть больше.
— Поддерживайте входное напряжение на уровне, близком к напряжению заряда + 1,75 В, но все же выше.
— LM317 пропускает ток в противоположном направлении. Это означает, что вы не должны оставлять аккумулятор подключенным к автономному зарядному устройству.
Это связано с тем, что падение напряжения уменьшается по мере уменьшения тока.
Это хорошо соответствует поведению этого зарядного устройства, которое постепенно снижает ток.
В зависимости от вашей марки и выбора регулятора напряжения вам может потребоваться немного увеличить это значение для достижения полной зарядки.
Если вы не можете установить целевое напряжение заряда, регулируя потенциометр, вероятно, ваше входное напряжение должно быть выше.
(или ваши резисторы выходят за пределы допуска)
Сначала создайте его, а затем, когда вы будете удовлетворены, вы сможете улучшить его .