Диагностика по широкополосным лямбда-зондам
В предыдущих статьях мы рассмотрели назначение, принципы работы и способы проверки «скачковых» датчиков кислорода (лямбда-зондов). Также были рассмотрены те возможности в поиске дефектов (диагностике) топливной системы автомобиля, которые открывает правильный анализ показаний этих датчиков.
Но все мировые автопроизводители постепенно отказываются от них и переходят на так называемые «широкополосные» лямбда-зонды. Почему так происходит? И чем плохи датчики, которые верой и правдой служили на протяжении многих лет? Чтобы ответить на данный вопрос, нам необходимо вернуться в прошлое и посмотреть, как развивалась борьба за экологию.
До 60-х годов прошлого века об экологии никто не думал. Автомобилей было мало, их «вклад» в загрязнение атмосферы был незначительным. Все изменилось во время автомобильного бума начала 60-х. Первым от «чуда» современной цивилизации под названием «автомобиль» пострадал американский штат Калифорния. Не очень удачное географическое положение и крайне неблагоприятная «роза ветров» — он очень плохо продувается, и людям от выхлопных газов просто стало нечем дышать. Был принят ряд законов, обязывающих автопроизводителей повышать качество выпускаемых автомобилей по экологическим параметрам. До недавнего времени это был громадный рынок сбыта автомобилей.
На нем торговали все мировые производители. А законы рынка очень жестоки – хочешь торговать на моем рынке, выполняй поставленные условия. Таким образом, требования законодательства Калифорнии распространились на весь мир. Отдельно хочется отметить рынок Европы. Тут «роза ветров» более благоприятная, экологические требования к автомобилям более мягкие. И стандарты по экологии сразу разделились на «американские» — более жесткие и «европейские» — чуть более мягкие. На данное время автомобильные рынки Старого и Нового Света практически заполнены. По расчетам аналитиков, свободные ниши имеются пока в России и Китае. Поэтому к рынкам этих стран приковано пристальное внимание всех автопроизводителей мира. До недавнего времени экологии на этих рынках придавалось незначительное значение. Но вступление России в ВТО потребовало ужесточения экологических норм для выпускаемых в стране автомобилей. Как же выполнить все более ужесточающиеся международные экологические требования?
Вредные выбросы — это несгоревшее топливо. При полном сгорании углеводородов всего топлива образуется только СО2 (углекислый газ) и Н2О (вода). Если топливо сгорает не полностью, в выхлопе образуются продукты неполного сгорания. Пресловутые СО и СН. Ну, а если топливо полностью не сгорает, что происходит с крутящим моментом? Правильно – он падает! Что происходит с расходом топлива (если вы просто выливаете его в выхлопную трубу)? Правильно – он растет! И вот здесь полностью пересеклись интересы экологов, производителей автомобилей и специалистов автосервисов. Исправный автомобиль имеет прекрасную динамику, низкий расход топлива и еще атмосферу не загрязняет! От чего зависит крутящий момент, расход топлива и вредные выбросы? Основное требование – система управления двигателем должна поддерживать стехиометрический состав смеси. По современным стандартам отклонение не должно превышать 2%. Для контроля над этим параметром как раз и служат датчики кислорода в выхлопе.
Начало широкого применения лямбда-зондов в автомобилестроении было положено еще в конце 70-х годов прошлого столетия. Появление «скачковых» датчиков кислорода позволило на тот момент решить эту задачу. Но для выполнения норм Евро-4 и Евро-5 точность этих датчиков перестала удовлетворять производителей. Их недостатком явилось то, что состав смеси они определяют только по наличию кислорода в выхлопе. Нет кислорода – либо стехиометрия, либо богатая смесь. Есть кислород – бедная смесь. Работают по принципу «да–нет». Системе лямбда — регулирования постоянно приходится чуть добавлять и убавлять топливо, чтобы понять, находится ли система в зоне стехиометрии. Это приводит к некоторой задержке реакции системы при возникновении неизбежных отклонений и имеет определенную погрешность при измерении их величин. Для увеличения точности потребовались датчики, которые могут определить избыток или нехватку кислорода в процентах. Так появились широкополосные датчики кислорода. При возникновении малейшего отклонения от правильного состава смеси они моментально дают блоку управления двигателя указание внести поправки и указывают их величину с достаточно большой точностью. На данный момент широкополосные датчики занимают лидирующее положение в автомобилестроении.
Для рассмотрения принципов работы широкополосных датчиков кислорода обратимся к ставшему уже классическим описанию, данному фирмой Bosch в конце прошлого столетия и вошедшему практически во все учебные пособия и публикации в СМИ и в Интернете. К сожалению, данное описание не дает понимания алгоритмов их работы и (судя по вопросам на форумах) не всегда понятно специалистам автосервисов. Попробуем исправить эту ситуацию.
Условно систему лямбда — регулирования с широполосным датчиком кислорода можно разделить на 4 зоны (см. рис.1). Зона А – ионный насос, зона В – «скачковый» лямбда – зонд (элемент Нернста), зона С – разъем и проводка, зона D – блок управления двигателем (ЭБУ) 4.
Рисунок 1
Выхлопные газы 1 из выхлопной трубы 2 через канал поступают в диффузионную щель 6. Здесь они подвергаются каталитическому дожиганию (как в обычном катализаторе), и здесь же (в зависимости от первоначального состава смеси в двигателе) образуется либо избыток, либо недостаток кислорода. Поскольку толщина щели невелика – около 50 мкм, процесс происходит очень быстро. Но для протекания реакции каталитического дожигания нужна температура (в зависимости от конструкции – от 200 до 300 градусов Цельсия). Учитывая тот факт, что температура отработавших газов (ОГ) на холостом ходу может и не достигать указанных значений, необходимым элементом является нагреватель 3. Непрогретый лямбда-зонд не работоспособен.
Далее в работу вступает элемент Нернста 7 (зона В). Сравнивая состав контрольного воздуха в камере 5 с составом газов в щели 6, он дает информацию ЭБУ о наличии или отсутствии кислорода в ней. Только «да — нет». На основании этих показаний ЭБУ 4 дает команду ионному насосу 8 (зона А):
1. Откачать лишний кислород из щели в выхлопные газы, если избыточный кислород там присутствует. Бедная смесь. Ток положительный.
2. Закачать недостающий кислород в щель, если его там нехватка. Богатая смесь. Ионный насос «отнимает» кислород у продуктов выхлопа и перекачивает его в щель. Ток отрицательный.
3. Ничего не делать, если смесь стехиометрическая. Ток нулевой.
Ток ионного насоса прямо пропорционален разности концентраций кислорода на разных его сторонах. Таким образом, по полярности и величине тока этого элемента сразу же определяется состав смеси. Получив указание от ЭБУ, ионный насос пытается привести состав ОГ в щели, соответствующий стехиометрии. По его току ЭБУ понимает, куда и насколько отклонилась смесь, и сразу принимает меры по корректировке времени впрыска в ту или иную сторону. Колебания смеси ему не нужны – ЭБУ сразу видит абсолютные величины отклонений и выводит стехиометрию в идеал.
С началом применения широкополосных лямбда– зондов работа диагностов значительно облегчилась. Такой прибор, как газоанализатор, стал попросту ненужным. Если ЭБУ выводит показания в виде тока, то «нулевой» ток говорит о том, что системе лямбда-регулирования удалось вывести стехиометрию. По показанию коррекции смотрим, какой ценой и в какую сторону ему это удалось (см. рис. 2).
Рисунок 2
Если ток не нулевой, это означает, что системе вывести стехиометрию не удалось. Причин тут две:
1. Неисправен сам лямбда-зонд. Как показывает практика, код ошибки в этом случае возникает крайне редко. Причина проста – чтобы проверить исправность датчика, ЭБУ обязан включить систему мониторинга, т.е. принудительно обогатить или обеднить смесь. А это приводит к нарушению экологии! Поэтому мониторинг зонда проводится нечасто. Например, два автомобиля Opel Vectra, оборудованные системой впрыска Bosch и принимавшие участие в съемках фильма ОРТ «Левый автосервис», обнаружили отказ этого датчика только через несколько часов после его возникновения.
2.Дефект критичен. Система корректировки по лямбда-зонду уже дошла до пределов своей регулировки, но смесь по-прежнему отклоняется от стехиометрии. В этом случае возможен код «Превышение пределов топливной коррекции».
Действия диагноста в этих случаях таковы:
1. Проверка самого лямбда-зонда.
2. Если зонд исправен, определяем состав смеси. Стандарт OBD2 гласит однозначно: положительный ток – бедная смесь. Отрицательный ток – смесь богатая. График зависимости тока от состава смеси приведен на рис.3. Ну а причины и способы устранения отклонения состава смеси достаточно подробно описаны в учебных пособиях. Не будем повторяться.
Рисунок 3
Так выглядит идеальная картинка. Реалии куда более сложнее. Итак, давайте рассмотрим те «подводные камни», которые нас ждут при анализе показаний широкополосного лямбда-зонда.
Первый «подводный камень»: не все производители придерживаются стандарта. Очень часто ко мне приезжали автомобили, на которых стандарт был нарушен — положительный ток соответствовал богатой смеси, отрицательный – бедной. Но не стоит сразу винить производителей этих датчиков. Полярность тока зависит только от схемотехники и программного обеспечения ЭБУ.
ПРОВЕРКА: Необходимо в воздухозаборник работающего автомобиля добавить немного горючего вещества (принудительно обогатить смесь). На нашем автотехцентре мы используем обычный очиститель карбюратора. При наличии изменений показаний датчика однозначно говорим о его исправности и определяем, в какой полярности выводятся его показания на экран сканера.
Самый сложный случай, когда при этой проверке реакции широкополосного лямбда-зонда нет. Однозначного ответа – где дефект, дать невозможно. Вернемся опять к рис.1 .
Дефект возможен в зонах А и В (сам датчик), зоне С (проводка) либо в самом ЭБУ – зона D. В большинстве сервисов предлагают замену датчика, как наиболее вероятную причину. Но учитывая его стоимость, есть смысл обратиться к зоне С (проводке и разъему) для более глубокого поиска дефекта.
Pin 1. Ток ионного насоса. Проводится миллиамперметром на 10 mA и в большинстве случаев этот замер затруднителен.
Pin 2. Масса. Отклонение от «массы» двигателя не более 100 mV. Если «масса» идет с ЭБУ, возможно наличие смещения, заложенного производите- лем. Необходимо свериться с мануалами.
Pin 3. Сигнал элемента Нернста. При отключенном разъеме должен составлять 450 mV. При подключенном разъеме – напряжение должно находиться в пределах 0…1v. Но некоторые производители могут отклоняться от этого правила. Принудительное обогащение смеси позволяет определить исправность этой цепи.
Pin 4 и 5. Напряжение подогревателя. На современных автомобилях управляется с помощью Широтно-Импульсной Модуляции (ШИМ). Проверка необязательна, ибо в случае ее отказа код ошибки с Р0036 по Р0064 (Heater Control HO2S) пробивается практически моментально.
Второй «подводный камень»: ЭБУ не может «понимать» ток. Его входные цепи способны оцифровывать только напряжения. И блоки управления начинают выводить на сканер не ток, а падение напряжения на каком-то нагрузочном сопротивлении в ЭБУ. В зависимости от схемотехники блока оно в норме может иметь абсолютно разное значение. В потоке данных выводится не ток, а какое-то абстрактное напряжение. Мануалы на конкретный автомобиль его указывают.
Но способы проверки точно такие же. Принудительное обогащение смеси позволяет определить исправность датчика, а просмотр топливной коррекции позволяет понять, в каком состоянии находится система топливоподачи автомобиля.
Третий «подводный камень»: большинство широкополосных датчиков не взаимозаменяемы. Реклама настойчиво предлагает разнообразный выбор. На форумах часто звучат вопросы: «Какой датчик лучше поставить?». Как быть рядовому потребителю? Что выбрать?
Ответ дают сами производители автомобилей. Ставить нужно только те датчики, которые рекомендовал завод-изготовитель. В противном случае, производитель не в состоянии гарантировать правильную работу системы.
«Компания NGK Spark Plug Co., Ltd стала одним из пионеров в области лямбда-регулирования в начале 1980-х годов, когда на рынке был представлен регулируемый катализатор. Сегодня ассортимент продукции, выпускаемой под маркой NTK, включает цирконий-оксидные, титановые, широкополосные лямбда-зонды и покрывает порядка 7600 модификаций автомобилей. Все лямбда-зонды соответствуют спецификации оригинальной комплектации (в том числе по длине проводов, штекерам и электрическим параметрам), что гарантирует простоту установки и безупречную эксплуатацию. Каждый лямбда-зонд NTK обеспечивает оптимальные рабочие условия для функционирования катализатора, идеальное образование смеси, а также способствует сокращению выброса вредных веществ и поддержанию расхода топлива на минимальном уровне. Любой автомобиль, оснащённый регулируемым катализатором, имеет, как минимум, один кислородный датчик. Современным же автомобилям требуется не менее двух датчиков. Широкополосные датчики могут регулировать соотношение воздуха и топлива в топливно-воздушной смеси в широком диапазоне, что особенно важно для современных двигателей, работающих на обеднённых смесях, при значениях лямбда гораздо больше чем 1».
Автор: Федор Рязанов
15.05.2014 г.
injectorcar.ru
Как Проверить Широкополосный Лямбда Зонд ~ AUTOVIBER.RU
Как выявить неисправность лямбда-зонда при помощи мультиметра либо тестера?
Производители современных автомобилей оснащают их сложнейшими системами управления, состоящими из электроники и самых разных индикаторов. С помощью их происходит получение и обработка сообщений о положении дел в различных узлах машины. К таким относятся мотор, тормозная система, АКБ и лямбда-зонд (датчик кислорода), в том числе. Он заходит в число важных устройств управления и сигналит об остатке кислорода в выхлопных газах. Неисправность лямбда зонда угрожает нарушением точной работы авто.
Принцип действия
Датчик кислорода — непростая конструкция. К его многофункциональным деталям относят электролит, на который с различных сторон одеты наконечники для всасывания газовых консистенций — кислорода и отработанного горючего. Под ними находится чувствительный элемент, который при температуре до 400 градусов считывает сигналы и анализирует разницу потенциалов. Перечисленные детали запечатаны в корпус из металла. К нему подходят провода. Зависимо от модели их количество может варьироваться от 1 до 4. Они несут ответственность за работу датчика — питают, передают сигналы в блок управления и заземляют устройство. При достаточном объеме кислорода в сгораемой смеси КПД двигателя будет высоким. Но как и другие системы, лямбда-зонд тоже дает сбои.
Что расскажет о неисправности датчика?
Сигнал о неисправности датчика кислорода, можно предположить, если в работе автомобиля наблюдаются такие симптомы:
Читайте так же
- мотор работает неровно;
- движение происходит рывками;
- повышается потребление горючего;
- ранняя «смерть» катализатора;
- в Европе обращают внимание и на токсичность выхлопных газов.
А не поломан ли датчик?
Лучшим временем для проверки всех систем работоспособности автомобиля будет ближайший техосмотр. Однако бывают ситуации, когда возникает необходимость узнать причины плохой работы датчика кислорода ранее. Как проверить лямбда зонд самостоятельно?
Широкополосный лябда-зонд Toyota. Диагностика. Чтение показаний.
Цены и комплектации на контроллеры форсунок — FORSUNKOV.RU Прошу за качество сильно не пинать. Говорю много, но .
Лямбда зонд широкополосный UEGO AEM 30-4110
В этом видео рассказываю о комплектации лямбда зонда широкополосного UEGO AEM 30-4110 и его предназначении.
Параметры, по которым происходит сверка:
- напряжение в цепи подогрева;
- «опорное» напряжение;
- исправность нагревателя в датчике;
- сигнал лямбды.
Это значит, что полностью оценить работу лямбда-зонда не составит большого труда.
Осторожно: «Напряжение»
Для того, чтобы узнать, поступает ли напряжение в цепь подогрева, понадобиться дополнительное оборудование. Сигнал измеряется стрелочным или цифровым вольтметром или более современным — мультиметром.
- Включить зажигание, не отсоединяя разъем датчика.
- Воткнуть щупы в разъемы проводов.
- Монитор должен высвечивать
12 В. Это значение соответствует напряжению аккумулятора.
- «» поступает к нагревателю непосредственно через предохранитель. Если он отсутствует, необходимо проверить звенья цепи: «аккумулятор-предохранитель-кислородник».
- «—» передается посредством электронных систем управления. При его отсутствии надо проверить разъемы цепи, ведущие к блоку управления.
Опорное напряжение проверяется тем же вольтметром или можно использовать мультиметр.
Читайте так же
- Включить зажигание.
- Измерить напряжение между сигнальным проводом и массой.
- Значение число должно составлять 0,45 вольта.
Если показания отличаются на 0,2 В и более это сообщает о проблеме в сигнальной цепи или плохом контакте с массой.
Как проверять нагреватель лямбда-зонда?
В этот раз нам нужен тестер в режиме измерения сопротивления.
- Отсоединить разъем лямбда-зонда.
- Проверить сопротивление между проводами нагревателя.
- Значение может отличаться но должно находиться в пределах от 2 до 10 Ом.
Если сопротивление отсутствует, это может быть сигналом обрыва непосредственно в датчике. В таком случае он нуждается в замене.
Сигнал датчика кислорода
Самая сложная и ответственная проверка лямбда зонда заключается в оценке его сигнала. Для этого понадобится уже известные мультиметр или вольтметр. На СТО существуют более новые компьютеризированные тестеры, но в условиях гаража можно обойтись и без них.
- Запускается мотор.
- Движок прогревается до рабочей температуры.
- Между сигнальным проводом и проводом массы подсоединяются щупы.
- Обороты двигателя следует повысить до 3000 в минуту.
- Фиксируются изменения в числовых значениях датчика кислорода.
Монитор тестера должен отметить скачок в диапазоне от 0,1 до 0,9 вольта. Если числа другие — возникла необходимость в новом лямбда-зонде.
Узнав о том, как проверяется рабочее состояние датчика кислорода, можно быть уверенным в том, что удастся избежать обмана в автосервисе.
Читайте так же
autoviber.ru
BMW 5 series малыха моя дерзкая › Бортжурнал › Как проверить лямбда-зонд — познавательное
Почитал тут недавно книжку:
Лещенко В . П ., « Кислородные датчики », М, Легион — Автодата, 2003
В ней описано как проверить состояние лямбда-зонда.
Лямбда-коэффициент показывает, насколько измеренное соотношение масс воздуха и топлива далеко от идеального (стехиометрического) равного 14,7. Он вычисляется по формуле:
Бывают обычные, узкополосные лямбда-зонды, и широкополосные. Обычный точно измеряет соотношение смеси только вблизи 14.7, и при значительном отклонении от него он искажает показания (нелинейная характеристика) или вообще зашкаливает в ту или иную сторону. А широкополосный умеет измерять соотношение смеси в широкой полосе. Поэтому он широко используется в тюнинге двигателей (которые штатно ездят на смесях с составом далеким от 14.7), и при настройке топливных карт (т.к. им можно пользоваться для сравнительно точного измерения состава смеси).
Вкратце, сигнал нормально работающего лямбда-зонда должен выглядеть примерно так:
Он изменяется в диапазоне от 0 до 1 вольт, с частотой порядка 1-5 Гц (с такой частотой изменяет состав смеси система управления двигателем — что и отражает изменяющийся соответственно сигнал датчика), среднее значение, соответствующее лямбда-коэффициенту равному единице — порядка 0.5 вольт.
График коэффициента даже на постоянных оборотах представляет собой кривую подобную синусоиде потому, что система управления двигателем осуществляет регулирование состава топливо-воздушной смеси методом двухступенчатого регулирования, а при таком методе регулирования выходная величина всегда колеблется около среднего значения в небольших пределах. Видимо, регулирование более продвинутым методом изобрести не сумели 🙁 или не сочли нужным почему-то.
Если датчик испорчен, то, в одних случаях, средний уровень его выходного сигнала снижается, в других — замедляется скорость срабатывания датчика. Видимо, смотря как и чем испорчен. В третьих случаях — значения выходного сигнала могут вообще уходить в минус (обратная полярность).
Поэтому недостаточно смотреть средний уровень сигнала, нужно еще смотреть как датчик реагирует на принудительное обогащение и обеднение смеси (скажем резкий набор и сброс газа). Короче одним вольтметром не обойтись, да и осциллографа маловато — нужен специальный сканер с самописцем-плоттером для записи сигнала 🙁
Ниже приведенные графики взял отсюда
Средний практический срок службы лямбда-зонда — 50-100 тыс. км. Если ваша машина прошла больше, скорее всего датчик уже утратил номинальные характеристики или неисправен совсем.
Сигнал исправного датчика.
Сигнал датчика с ухудшившимися характеристиками.
Сигнал неисправного датчика. Средний уровень сигнала в норме, но фронт сигнала слишком растянут (tau больше 120 мс).
Как все сложно и непросто 🙁
UPD 12.11.2013:
«Перед подключением к машине рекомендуется проверить зонд. Подключите к машине (не устанавливая в выпускную систему) и дождитесь, пока датчик нагреется. В руках его не держите, а свесьте откуда-то или положите на что-то керамическое. Должно показывать очень бедную смесь. Потом можно взять обычную газовую зажигалку и нажать на газ, не зажигать! Показания должны отображать богатую смесь, потом можно продуть датчик и опять должно показывать бедную.»
Пустить газ. Не зажигать.
P.S. Большой минус в карму тем кто рисует графики и не проставляет на них размерность, единицы и пределы по осям, в особенности — по оси времени 🙁 Пусть они в следующей жизни всю жизнь плакаты-растяжки рисуют, и чтобы у них окончания не умещались 🙂
www.drive2.ru
Контроль работы лямбда-зондов | Диагностирование автомобиля
Лямбда-зонды — важнейшие датчики, контролирующие точный состав смеси. Сигналы лямбда-зонда используются также для косвенного контроля других систем, уменьшающих выбросы. Таким образом, работоспособность зондов имеет большое значение для всей системы. Контроль лямбда-зондов и контура регулирования обеспечивается путем постоянных проверок правдоподобности сигналов напряжения зонда, измерения тока и напряжения на нагревательном резисторном элементе зонда, измерения регулирующей частоты (динамический анализ) и распознавания изменений характеристики зонда, обусловленных его старением. При изменении характеристики особо анализируются амплитуда регулирования, параметры реагирования и длительность регулирования.
Контроль управляющего зонда
Контроль управляющего зонда осуществляется путем анализа смещения характеристической кривой напряжения зонда. К смещению кривых приводит старение или «отравление» зонда. Смещение распознается блоком управления и согласуется в заданных пределах. При превышении предела согласования регистрируется неисправность и загорается индикатор MIL.
Проверка зондов выполняется при как можно более постоянных условиях эксплуатации (около 20 секунд движения с постоянной скоростью). В ЭБУ записаны предельные значения для времени включения лямбда-зонда и времени ожидания сигналов в диапазонах богатой и бедной смеси. При превышении предельных значений регистрируется неисправность в регистраторе событий и загорается индикатор MIL.
Контроль диагностического зонда
Для полного контроля контура регулирования и функции катализатора необходимо использовать и диагностический зонд. Работоспособность зонда можно проверить через диагностику пределов регулирования или диагностику движения.
Диагностика пределов регулирования
При этой диагностике управляющая электроника следит за параметрами регулирования диагностического зонда путем длительного, целенаправленного изменения состава смеси. При превышении заданных пределов регулирования регистрируется неисправность. Если состав смеси оптимальный, то напряжение диагностического зонда колеблется в диапазоне лямбда = 1. Если диагностический зонд выдает более высокое или более низкое напряжение (отличное от среднего значения), значит состав смеси неправильный или неисправен катализатор. ЭБУ изменяет регулирующее значение лямбда до тех пор, пока зонд снова не отправит значение лямбда = 1. Это регулирующее значение имеет определенные пределы. При превышении этих пределов система OBD исходит из неисправности контролирующего зонда или системы выпуска ОГ (например, вторичный воздух).
Контроль выполняется по следующему образцу: при падении напряжения зонд сообщает блоку управления двигателем об увеличении концентрации кислорода в ОГ. ЭБУ повышает регулирующее значение лямбда, и смесь обогащается. Напряжение зонда увеличивается, и ЭБУ снова понижает регулирующее значение. Это регулирование выполняется в течение длительного времени. По достижении предела регулирования зонд продолжает сообщать о падении напряжения из-за слишком высокой концентрации кислорода в ОГ. ЭБУ повышает регулирующее значение для обогащения смеси. Однако, несмотря на обогащение смеси, напряжение зонда остается низким, что обусловлено неисправностью, и ЭБУ повышает регулирующее значение до запрограммированного предела регулирования. ЭБУ распознает неправдоподобное состояние эксплуатации; регистрируется неисправность и загорается индикатор MIL.
Рис. Характеристика сигнала при диагностике пределов регулирования
Диагностика движения
Работоспособность диагностического зонда также можно контролировать — для этого ЭБУ проверяет и анализирует сигналы зонда в режимах ускорения и принудительного холостого хода. В фазе разгона смесь обогащается, и концентрация кислорода в ОГ уменьшается. Напряжение зонда должно увеличиться. В режиме принудительного холостого хода картина прямо противоположная. Подача топлива прерывается, и концентрация кислорода в ОГ увеличивается. Напряжение зонда должно уменьшиться. Если реакция системы при нескольких этих режимах отличается от предусмотренной, то блок управления двигателем распознает зонд как неисправный и регистрируется неисправность.
Диагностика обогрева лямбда-зонда
Наряду с описанными выше видами диагностики при проверке лямбда-зонда можно проводить расширенные проверки функционирования и правдоподобности. При этом электрические неисправности распознаются по КЗ или обрыву проводов. Функции контролируются спорадически. Важнейшая дополнительная диагностика — это проверка обогрева лямбда-зонда. Обогрев лямбда-зонда можно контролировать, к примеру, по времени. Так, регулирующая электроника не позднее чем через 10 секунд после запуска двигателя ожидает адекватный сигнал напряжения зонда. Если сигнал поступает позже либо вообще не поступает, то нужно исходить из неисправности обогрева лямбда-зонда.
Еще один метод проверки мощности обогрева зонда состоит в измерении сопротивления нагревательного элемента зонда и сравнении его с заданным. Кроме того, можно анализировать регулирование обогрева через сравнение температуры, измеренной внутренним датчиком температуры лямбда-зонда, и сохраненной температуры нормального режима (например, 720°С). Если отклонение температуры от нормы слишком велико, то ЭБУ регистрирует неисправность системы выпуска и загорается индикатор MIL.
Диагностика широкополосного лямбда-зонда
Контроль широкополосного лямбда-зонда несколько отличается от контроля зондов с релейной характеристикой. Выходной сигнал зонда представляет собой величину тока, которая должна в точности соответствовать запрограммированным номинальным значениям при колебаниях смеси. Этот ток пересчитывается блоком управления в напряжение и выдается для системы диагностики.
Рис. Контроль широкополосного лямбда-зонда
На рисунке показаны кривые пересчитанного напряжения у исправного и неисправного широкополосных зондов. Колебания смеси, необходимые для диагностики зонда, инициируются блоком управления через определенные промежутки времени и анализируется характеристика сигналов зонда. При недостижении или превышении номинальных значений в пределах заданного диапазона загорается индикатор MIL и регистрируется неисправность.
ustroistvo-avtomobilya.ru
Широкополосный лямбда-зонд – особенности работы и диагностика
Широкополосный лямбда-зонд обеспечивает формирование правильной топливно-воздушной смеси в современных двигателях с системой впрыска.
Если этот датчик не работает должным образом, то обеспечение современных экологических норм будет невозможным.
Лямбда-зонд измеряет остаточное содержание кислорода в выхлопных газах и сравнивает его с содержанием кислорода в окружающем воздухе. В результате блок управления двигателем способен регулировать количество впрыскиваемого топлива таким образом, чтобы обеспечивался оптимальный состав топливовоздушной смеси. Это является необходимым условием для эффективной работы каталитического нейтрализатора выхлопных газов. Обычные однополосные лямбда-зонды с технологией диоксида титана и диоксида циркония обнаруживают только переход от богатой смеси (недостаток воздуха) к обедненной смеси (избыток воздуха) и наоборот.
Поскольку современные дизельные и бензиновые двигатели работают вне стехиометрического соотношения лямбда = 1, были разработаны так называемые широкополосные лямбда-зонды. Широкополосный зонд имеет более широкий диапазон измерения и точно измеряет как в богатых, так и в бедных областях. Широкополосные зонды внутри оснащены двумя ячейками: измерительной и ячейкой накачки. В измерительной ячейке измеряется концентрация кислорода, а затем преобразуется в сигнал напряжения, который сравнивается с опорным напряжением 450 мВ. Если это значение отклоняется от эталонного значения, включается ячейка накачки и ионы кислорода поступают в или из измерительной ячейки для коррекции концентрации кислорода, таким образом, чтобы опорное напряжение поддерживалось на уровне 450 мВ. Значение и полярность электрического тока, требуемого ячейкой накачки для поддержания постоянной концентрации, представляют собой эквивалент концентрации кислорода в смеси. Если лямбда-зонд выходит из строя, сжигание в современном двигателе больше не может контролироваться должным образом, что отрицательно сказывается на составе и эффективности очистки выхлопных газов.
Измерение сигнала и диагностика лямбда-зонда
Чтобы проверить функцию лямбда-зонда, сначала необходимо установить зонд в разъем. В VW Passat B7 с двигателем 1,6 TDI оба расположены непосредственно в моторном отсеке. Чтобы проверить включение нагревательного контура и встроенного нагревательного резистора, необходим мультиметр для измерения напряжения и сопротивления зонда. Для проверки электрического управления нагревательным контуром необходим осциллограф. Наблюдение за работой лямбда-зонда проводят при помощи диагностического устройства. Однако это относится только к бензиновым двигателям, где значение лямбда находится в границах 1 в двигателях с впрыском перед впускным клапаном и может варьироваться в пределах от 0,8 до 2,5 в силовых установках с непосредственным впрыском. В дизелях нет смысла наблюдать за сигналом лямбда-зонда, так как они всегда работают в очень широком диапазоне состава смеси. Значение лямбда в дизеле может изменяться от 1,4 до 12. Используя данные диагностического устройства, теперь можно контролировать ток накачки как положительное или отрицательное значение изменения коэффициента избытка воздуха. Некоторые диагностические устройства также отображают графическое изменение значения коэффициента лямбда на дисплее. Основываясь на полярности (плюс или минус) тока накачки, теперь можно определить, работает ли двигатель с богатой или бедной смесью. Отрицательные значения сигнала указывают на богатую смесь, а положительные — на обедненную. На практике значение лямбда быстро переходит в отрицательный диапазон (богатая смесь). Если убрать ногу с педали акселератора после короткого нажатия, значение лямбда должно быстро перемещаться в положительный диапазон (обедненная смесь). Плохие или аномальные сигналы от широкополосных лямбда-зондов могут иметь много причин и не обязательно должны быть связаны с неисправным лямбда-зондом. Одной из причин может быть неправильное измерение массы воздуха, что приводит к плохому управлению впрыском. Проблемы с топливным насосом и форсунками также могут вызывать неправильные значения. То же самое относится к утечкам воздуха в выхлопной системе или в цепи впуска воздуха, а также к проблемам в системе зажигания. Причиной может быть также плохое состояние двигателя и неисправный клапан EGR.
info-parts.ru
устройство, принцип работы, неисправности. Широкополосный лямбда-зонд :: SYL.ru
Ежегодно в мире ужесточаются экологические нормы. Сейчас каждый автомобиль укомплектован системой фильтрации отработавших газов. И если на дизельных моторах эту функцию выполняет сажевый фильтр и система SCR, то на бензиновых все несколько иначе. Здесь используется каталитический нейтрализатор. Именно он преобразует вредные металлы в экологически чистые оксиды. Однако его работа и эффективность зависима от электроники. Так, в конструкции автомобиля можно встретить широкополосный датчик кислорода. Что это за элемент, как он работает, как устроен и можно ли его проверить своими руками? Ответы на эти вопросы узнаете в нашей сегодняшней статье.
Характеристика
Что это за элемент? Широкополосный лямбда-зонд – это устройство, которое отвечает за измерение количества кислорода в выхлопных газах автомобиля. Благодаря работе данного элемента обеспечивается наиболее правильное смесеобразование и, как следствие, оптимальная и стабильная работа двигателя на всех его режимах. Процесс управления концентрацией кислорода в газах называют лямбда-регулированием.
Сам название «лямбда» происходит от греческого символа λ. В автомобилестроении данным символом обозначается коэффициент остатка воздуха в горючей смеси.
Где находится?
Устанавливается широкополосный лямбда-зонд в выхлопной системе. В зависимости от типа автомобиля, в конструкции может использоваться один или несколько таких датчиков. Так, первый устанавливается до катализатора, второй – после него. Внешне его можно увидеть не всегда. Например, на «Калине» первых поколений данный элемент расположен в районе днища. А начиная со второго поколения кислородный датчик (лямбда-зонд) монтируется прямо в выпускной коллектор, доступ к которому осуществляется из-под капота. Но в любом случае данный элемент будет выглядеть как некая форсунка, что торчит из трубы со жгутом проводов.
Отметим, что на старых автомобилях использовался не широкополосный датчик кислорода, а двухточечный. Он имеет простую конструкцию. Был заменен ввиду необходимости более точных показаний. Ведь чем правильнее смесь, тем более оптимальной будет работа двигателя в разных режимах и нагрузках. Кстати, некоторые устанавливают широкополосный датчик кислорода с показометром. Обычно это цифровой «будильник», который показывает соотношение бензина и воздуха в смеси в режиме реального времени. Зачастую используется для диагностики неисправностей авто. На заводе такой элемент не устанавливается.
Устройство
Конструкция данного механизма предполагает наличие следующих элементов:
- Металлический корпус с резьбой.
- Электрический нагреватель.
- Наконечник.
- Защитный экран.
- Токопроводящий контакт.
- Уплотнительная манжета для провода.
- Изолятор.
В основе механизма лежат два чувствительных электрода. Внешний имеет платиновое напыление, благодаря которому электрод сильно чувствителен к кислороду. Внутренний же изготовлен из циркония. Устанавливается датчик таким образом, чтобы сквозь него проходили отработанные газы. Внешний электрод улавливает О2, после чего измеряется потенциал между двумя наконечниками. Чем он выше, тем больше кислорода в системе.
Широкополосный датчик кислорода являет собой усовершенствованную конструкцию двухконтактного механизма. Отметим, что потенциал разницы измеряется под воздействием определенной силы тока.
Как это работает?
Алгоритм действия данного элемента основывается на поддержке определенного напряжения. Оно составляет 0,45 В. Это стабильный показатель между двумя электродами датчика.
При снижении концентрации О2, напряжение между керамическим элементом возрастает. это свидетельствует о наличии обогащенной смеси. Данный сигнал моментально поступает в электронный блок управления. Последний на основаниях этих сигналов создает ток определенной силы на исполнительных устройствах (в том числе на форсунке). Та, в свою очередь, впрыскивает больше (или меньше, в зависимости от показаний) бензина в камеру. Если смесь бедная, датчик сигнализирует об этом ЭБУ таким же образом.
Важная особенность
Стоит отметить, что работа чувствительных наконечников возможна только при достижении температуры в триста градусов Цельсия. Рабочий диапазон керамических электродов составляет от трехсот до тысячи градусов. Но как тогда действует элемент «на холодную»? Ранее на двухконтактных устройствах сигнал формировался от иных датчиков (расхода воздуха, положения заслонки и числа оборотов коленвала). Усредненное значение лямбды поступало на блок и тот формировал готовую смесь. Правда, значения эти были не всегда верными. Это не гарантировало оптимальную и стабильную работу двигателя внутреннего сгорания.
Поэтому в новом поколении датчиков (широкополосного типа) используется специальный подогреватель. Его функция – повысить температуру наконечников. Это необходимо, чтобы устройство включилось в работу сразу же после холодного старта двигателя. При достижении температуры в триста градусов, керамический элемент становится твердым электролитом, который пропускает сквозь себя ионы кислорода, скопившиеся на платиновой электродной сетке.
Нагревательный элемент расположен внутри корпуса датчика и питается принудительно от бортовой сети автомобиля.
Значение лямбды и связь с ДВС
Исходя из всего вышесказанного можно сказать, что работа стабильная работа двигателя внутреннего сгорания невозможна без широкополосного датчика. Именно этот элемент формирует сигнальные значения для ЭБУ, который впоследствии корректирует горючую смесь. Электронный блок является связующим звеном, который не только принимает импульсы, но и подает опорное напряжение 0,45 В на датчик. В зависимости от нагрузки двигателя внутреннего сгорания, режима его работы и рабочей температуры электроника подбирает наиболее оптимальное соотношение воздуха и топлива в смеси.
Считается, что идеальное соотношение – это 14,7 частей кислорода на одну часть бензина. При таком условии значение лямбды будет равно единице. Но не стоит забывать о таком значении, как коэффициент избытка воздуха. Если лямбда показывает выше единицы, значит, смесь будет обедненной. В таком случае в цилиндр поступит больше кислорода. Ежели лямбда ниже одного, значит, ЭБУ будет формировать обогащенную смесь. Так, в цилиндры поступит больше топлива, чем обычно.
Ресурс
Это довольно хрупкий элемент в автомобиле. Замена лямбда-зонда может понадобиться уже через 50 тысяч километров. Но как правило, на таком пробеге изнашиваются датчики отечественных авто. Если говорить об иномарках, замена лямбда-зонда может наступить через 100-120 тысяч километров. Точных цифр никто не регламентирует, поскольку ресурс зависит от многих факторов (вплоть до содержания свинца в бензине).
Признаки
Как определить, что кислородный датчик (лямбда-зонд) требует замены? Узнать это очень просто. Поскольку датчик будет неисправен, на электронный блок заведомо поступят ошибочные сигналы и данные. В результате мотор будет работать нестабильно. Причиной тому является неправильно сформированная топливовоздушная смесь. Неисправность кислородного датчика широкополосного типа сопровождается:
- Увеличением расхода топлива.
- Нестабильными оборотами на холостом ходу.
- Неконтролируемым нагреванием катализатора. после остановки мотора, он может потрескивать.
- Изменением концентрации СО в газах. Выхлоп будет более едким и неприятным на запах.
- Появлением лампы «Проверьте двигатель» на панели приборов.
- Снижением разгонной динамики.
- Провалами (рывками) при попытке набрать скорость.
Если появился хотя бы один из вышеперечисленных симптомов, это повод произвести детальную проверку широкополосного датчика кислорода.
Причины неисправности
Почему данный механизм может выходить из строя? Первая причина – это естественный износ. Если пробег автомобиля составил более 50 тысяч километров, ресурс механизма может подойти к концу. Но также датчик ломается по другим причинам:
- При обрыве проводов, что идут на датчик. В таком случае сигнал попросту не поступит на ЭБУ.
- При механическом повреждении. Многие датчики устанавливаются в районе днища. Если автомобиль проехал через глубокое препятствие, возможно повреждение измерительного элемента. При малейшей деформации разрушается гальванический элемент широкополосного датчика кислорода.
- При перегреве датчика. Это может произойти из-за неполадок в топливной системе автомобиля. Обычно это некорректный угол зажигания либо неправильный тюнинг двигателя (например, не та прошивка ЭБУ при чип-тюнинге).
- При загрязнении чувствительного элемента. Если закоксовывается верхний слой с платиновым покрытием, ионы не будут улавливаться широкополосным датчиком. Что это может быть? Обычно загрязнения происходят из-за попадания масла в камеру сгорания. данная копоть затем обволакивает стенки выпускного коллектора, а также наконечника датчика. Еще загрязнения могут происходить из-за использования некачественного бензина, который содержит много свинца.
- При разгерметизации корпуса. Такое бывает редко, но данную неисправность не следует исключать.
- При попадании антифриза в цилиндры двигателя. это происходит из-за пробоя прокладки головки блока. В результате газы приобретают характерный белый цвет. Помимо этого, меняется и концентрация кислорода в выхлопе. Простыми словами, датчик начинает «сходить с ума». ЭБУ готовит неправильную смесь.
Разбираем контакты
В отличие от двухконтактного датчика, широкополосный имеет несколько иное устройство.
К нему подводится целая колодка с проводами. За что отвечает каждый из них? Ниже мы расскажем о распиновке широкополосного датчика кислорода:
- Пин-1. Отвечает за ток ионного насоса. Напряжение на этом контакте должно составлять не менее 10 микроампер.
- Пин-2. Отвечает за массу. Допустимое отклонение – не больше 100 mV.
- Пин-3. Отвечает за работу гальванического элемента (сигнал Нернста). В отключенном разъеме уровень напряжения должен составлять порядка 0,45 В. При подключенном разъеме данная цифра находится в пределах 1 В.
- Пин-4 и 5. Эти контакты отвечают за напряжение на подогревателе. Управляется подогреватель широкополосного датчика путем широтно-импульсной модуляции. В случае отказа подогревателя, при компьютерной диагностике будут следующие коды ошибок: РОО36 и РОО64.
Подводим итоги
Итак, мы выяснили, как работает кислородный датчик, как устроен и почему он выходит из строя. Как видите, устроен широкополосный элемент гораздо сложнее, чем двухконтактный. Тем не менее именно такой тип позволяет точно контролировать и правильно готовить топливно-воздушную смесь, не возлагаясь на усредненные параметры. В случае выхода из строя элемент нужно срочно заменить.
Где находится датчик кислорода, мы уже знаем (до и после каталитического нейтрализатора либо в районе выпускного коллектора). При замене могут возникнуть трудности. Резьба часто прикипает, а открутить датчик можно только с использованием универсальных смазок типа ВД-40.
www.syl.ru
Как проверить Лямбда-зонд — DRIVE2
После нашей первой публикации Сам себе диагност: Как проверить датчик массового расхода воздуха на почту и прочие средства обратной связи стали сыпаться вопросы о датчике лямбда-зонд. Два вопроса, которые задавали машиновладельцы, как проверить датчик (самому не имея сложных инструментов для диагностики) и какие формы сигнала он индуцирует.
С этими серьезными вопросами разбирался Б. Миша.
Анимация — принцип работы системы с лямбда-зондом
(положительный потенциал на сигнальном проводе датчика напрямую зависит от разности количества кислорода в выхлопной трубе и количестве кислорода, окружающего выхлопную систему)
Прежде чем начать рассказывать о датчике кислорода, стоит отметить, что статья не претендует на мануал по диагностике датчика лямбда-зонд, однако направлена на то, чтобы понять принципы работы этого устройства и сформировать достаточное представление о форме сигнала кислородного датчика.
Датчик лямбда-зонд часто называют кислородным датчиком по той простой причине, что выходной сигнал датчика зависит от содержания кислорода в выхлопных газах автомобиля. Именно содержание кислорода, а не что-то еще. По содержанию кислорода в выхлопе можно судить о долях топлива и воздуха в смеси, которая подается в цилиндры. Для справки, известно, что воздушно-топливная смесь полностью сгорает, только при условии, если в смеси будет содержаться 14,7 частей воздуха и 1 часть топлива соответственно. Если же топлива будет больше, то часть углеводородов полностью так и не окислиться (горение — это и есть окисление. А для окисления нужен кислород. В богатой смеси, для полного окисления, кислорода не хватает), либо окислиться в катализаторе — такая смесь считается богатой (первые признаки — черные закопченные свечи). Если же смесь бедная, то в выхлопных газах обязательно будет присутствовать избыточное количество кислорода, который, кстати, так и не вступил в реакцию окисления топлива. Именно для такого точного расчета состава топливно-воздушной смеси и нужен лямбда-зонд в автомобиле.
Кислородные датчики я разделил на 2 типа — широкополосный лямбда зонд и обычные 2х уровневые датчики с 1, 2х, 3х и 4х жильными электрическими разъемами. Широкополосные кислородники в этой статье рассмотрены не будут. Если у 2х уровневого типа лямбда-зондов на выходе индуцируется сигнал относительно простой формы и уровень этого сигнала дает представление о содержании кислорода в выхлопных газах, то широкополосный лямбда-зонд, плюс ко всему, дает еще и информацию о численном значении смеси и требует от диагноста не только большего познания, но и специального оборудования.
Второй тип датчиков можно встретить на большинстве павлодарских машин. Однако за широкополосниками будущее, и они постепенно вытеснят примитивные 2х уровневые лямбда-зонды вовсе. (Скажу больше, не в обиду нашим автовладельцам, уже давно вытеснили. Только у нас такие машины недавно стали появляться и основная масса автопарка все же машины со старыми евро нормами по выбросам и токсичности).
Исправный и прогретый датчик лямбда-зонд
В свою очередь примитивные 2х уровневые датчики кислорода я разделил на 2 вида — датчики на основе оксида циркония и оксида титана. Я не случайно сделал такое деление по типам и видам. Дело в том, что у каждого типа и вида лямбда-зонда своя форма выходного сигнала. Например, лямбда-зонд на основе оксида циркония индуцирует на своем сигнальном проводе положительный потенциал разностью с массой автомобиля от 0,1 до 1 Вольт, а датчики на основе оксида титана уже дают разность потенциалов от 0,1 до 5 Вольт.
В идеале, для точной проверки формы сигнала с датчика, к примеру, из оксида циркония, нужен осциллограф. Сигнал с лямбда-зонда будет представлять собой волнообразную кривую, которая изменяется по времени от 0 до 1В, а если же датчик из оксида титана, то изменения будут уже от 0 до 5 вольт, но все той же волнообразной формы. На исправной лямбде сигнал будет меняться довольно часто. Если измерять напряжение вольтметром, то примерно 2-3 раза в секунду (не забывайте о том, что приборы по чувствительности разные). Однако, это можно узреть только на полностью прогретом датчике. Сигнал, на холодном датчике, меняет свою форму очень «неохотно» и больше похож на прямую, которая время от времени изменяется на небольшую величину и по мере прогрева сменяется все чаще и чаще.
Не прогретый лямбда-зонд
В результате проверки нашего датчика лямбда-зонда осциллографом и вольтметром мы опровергли несколько гаражных баек, которые можно услышать в реальности или прочитать на форумах в интернете.
Первая байка — это обогащение смеси при нагрузке на двигатель, например, когда автомобиль двигается в гору. Это действительно просто байка. Благодаря лямбда-зонду смесь корректируется постоянно и программа контроллера все время пытается держать ее на среднем значении 14 к 1. По другому и быть не может, иначе зачем выбрасывать в атмосферу несгоревшие углеводороды?
Вторая байка — это показание в 1 Вольт на непрогретой лямбде и якобы замкнутости ее внутренней цепи. Это действительно вымысел и как утверждают специалисты и подтвердили мы (просто любители поковыряться) на непрогретом лямбда-зонде сигнал сменяется очень медленно и зависит больше от обогащения смеси (видимо по показаниям датчика температуры охлаждающей жидкости).
Однако третья байка про обеднение смеси, когда автомобиль движется вниз с горы, оказалась и вовсе не байка. Если верить показаниям вольтметра, то можно смело заявлять, что это действительно так — вольтметр показал 0, а это свидетельствует о том, что количество кислорода в выхлопной системе автомобиле равно количеству кислорода окружающего эту же систему выхлопа.
Вам это о чем-либо говорит? Удачи на дорогах 😉
pavlodarauto.kz/info/view.php?id=90
www.drive2.com