Ограничитель тока заряда аккумулятора – Регулятор тока зарядного устройства — Схема-авто — поделки для авто своими руками

Схема ограничителя тока к любому зарядному устройству

В любом самодельном зарядном устройстве, выполненным для заряда автомобильного аккумулятора, должен быть ограничитель тока и стабилизация.

Такое дополнение нужно нам для выставления любого тока заряда. В этой статье я расскажу вам, как сделать это простое дополнение, вернее схему к любому зарядному устройству, схема проверенная, отлично работает со всеми зарядными устройствами.

Схема блока довольно простая и собрана всего на одном операционном усилителе. ЗУ должно отдавать ток до 10 ампер и работать в диапазоне напряжений от 13,5 до 14,5 Вольт.

Силовым элементом данной схемы является один полевой транзистор, через который будет проходить весь ток, поэтому его нужно устанавливать на радиатор. Экспериментально сначала схему я собирал на макетной плате…

В схеме желательно использовать полевые транзисторы с током от 40 ампер, но подойдёт и с током от 20 ампер.

В нашей схеме отлично зарекомендовали себя такие транзисторы как IRFZ44, IRFZ46, IRFZ48, IRF3205 и аналогичные.Я использовал шунт от китайского мультиметра он даёт довольно точные замеры при токах 10-14 ампер. Вы можете использовать другие шунты например низкоомный резистор или что-то подобное.

Транзистор так же можно заменить на биполярный, если брать наши транзисторы, то отлично подходят такие как КТ8101 или КТ819ГМ, но также не забудьте поставить их на радиатор. Операционный усилитель я взял ЛМ358, сдвоенный, но как показала практика можно взять и одиночный к примеру TLO71 или TL081.

Всё остальное делается, как обычно, я думаю, что в остальном никаких вопросов возникнуть не должно. Приставка к зарядному устройству работает сразу и не требует никаких настроек.Автор: Ака Касьян

xn--100—j4dau4ec0ao.xn--p1ai

Зарядка аккумулятора схема и принцип действия

Как происходит зарядка аккумулятора? Схема этого устройства сложна или нет, для того чтобы сделать устройство своими руками? Отличается ли принципиально зарядное устройство для автомобильного аккумулятора от того, что применяется для мобильных телефонов? На все поставленные вопросы мы попытаемся ответить далее в статье.

Общие сведения

Аккумулятор играет очень важную роль в функционировании устройств, агрегатов и механизмов, для работы которых необходимо электричество. Так, в транспортных средствах он помогает запустить двигатель машины. А в мобильных телефонах батареи позволяют нам совершать звонки.

Зарядка аккумулятора, схема и принципы работы данного устройства рассматриваются даже в школьном курсе физики. Но, увы, уже к выпуску многие эти знания успевают позабыть. Поэтому спешим напомнить, что в основу работы аккумулятора положен принцип возникновения разности напряжения (потенциалов) между двумя пластинами, которые специально погружаются в раствор электролита.

Первые батареи были медно-цинковыми. Но с того времени они существенно улучшились и модернизировались.

Как устроена аккумуляторная батарея

Единственный видимый элемент любого устройства – корпус. Он обеспечивает общность и целостность конструкции. Следует отметить, что наименование «аккумулятор» может быть полноценно применено только к одной ячейке батареи (их ещё называют банками), а том же стандартном автомобильном аккумуляторе на 12 В их всего шесть.

Возвращаемся к корпусу. К нему выдвигают жесткие требования. Так, он должен быть:

  • стойким к агрессивным химическим реагентам;
  • способным переносить значительные колебания температуры;
  • обладающим хорошими показателями вибростойкости.

Всем этим требованиям отвечает современный синтетический материал – полипропилен. Более детальные различия следует выделять только при работе с конкретными образцами.

Принцип работы

В качестве примера мы рассмотрим свинцово-кислотные батареи.

Когда есть нагрузка на клемму, то начинает происходить химическая реакция, которая сопровождается выделением электричества. Со временем батарея будет разряжаться. А как она восстанавливается? Есть ли простая схема?

Зарядка аккумулятора не является чем-то сложным. Необходимо осуществлять обратный процесс – подаётся электричество на клеммы, вновь происходят химические реакции (восстанавливается чистый свинец), которые в будущем позволят использовать аккумулятор.

Также во время зарядки происходит повышение плотности электролита. Таким образом батарея восстанавливает свои начальные свойства. Чем лучше были технология и материалы, которые применялись при изготовлении, тем больше циклов заряда/разряда может выдержать аккумулятор.

Какие электрические схемы зарядки аккумуляторов существуют

Классическое устройство делают из выпрямителя и трансформатора. Если рассматривать все те же автомобильные батареи с напряжением в 12 В, то зарядки для них обладают постоянным током примерно на 14 В.

Почему именно так? Такое напряжение необходимо для того, чтобы ток мог идти через разряженный автомобильный аккумулятор. Если он сам имеет 12 В, то устройство той же мощности ему помочь не сможет, поэтому и берут более высокие значения. Но во всём необходимо знать меру: если слишком завысить напряжение, то это пагубно скажется на сроке службы устройства.

Поэтому при желании сделать прибор своими руками, необходимо для машин искать подходящие схемы зарядки автомобильных аккумуляторов. Это же относится и к другой технике. Если необходима схема зарядки аккумулятора литий-ионного, то тут необходимо устройство на 4 В и не больше.

Процесс восстановления

Допустим, у вас есть схема зарядки аккумулятора от генератора, по которой было собрано устройство. Батарея подключается и сразу же начинается процесс восстановления. По мере его протекания будет расти внутреннее сопротивление устройства. Вместе с ним будет падать зарядный ток.

Когда напряжение приблизится к максимально возможному значению, то этот процесс вообще практически не протекает. А это свидетельствует о том, что устройство успешно зарядилось и его можно отключать.

Технологические рекомендации

Необходимо следить, чтобы ток аккумулятора составлял только 10% от его емкости. Причем не рекомендовано ни превышать этот показатель, ни уменьшать его. Так, если вы пойдёте по первому пути, то начнёт испаряться электролит, что значительно повлияет на максимальную емкость и время работы аккумулятора. На втором пути необходимые процессы не будут происходить в требуемой интенсивности, из-за чего негативные процессы продолжатся, хотя и в несколько меньшей мере.

Зарядка

Описываемое устройство можно купить или собрать своими руками. Для второго варианта нам понадобятся электрические схемы зарядки аккумуляторов. Выбор технологии, по которой она будет делаться, должен происходить зависимо от того, какие батареи являются целевыми. Понадобятся такие составляющие:

  1. Ограничитель тока (конструируется на балластных конденсаторах и трансформаторе). Чем большего показателя удастся достичь, тем значительней будет величина тока. В целом, для работы зарядки этого должно хватить. Но вот надёжность данного устройства весьма низкая. Так, если нарушить контакты или что-то перепутать, то и трансформатор, и конденсаторы выйдут из строя.
  2. Защита на случай подключения «не тех» полюсов. Для этого можно сконструировать реле. Так, условная завязка базируется на диоде. Если перепутать плюс и минус, то он не будет пропускать ток. А поскольку на нём завязано реле, то оно будет обесточенным. Причем использовать данную схему можно с устройством, в основе которого и тиристоры, и транзисторы. Подключать её необходимо в разрыв проводов, с помощью которых сама зарядка соединяется с аккумулятором.
  3. Автоматика, которой должна обладать зарядка аккумулятора. Схема в данном случае должна гарантировать, что устройство будет работать только тогда, когда в этом действительно есть потребность. Для этого с помощью резисторов меняется порог срабатывания контролирующего диода. Считается, что аккумуляторы на 12 В являются полностью, когда их напряжение находится в рамках 12,8 В. Поэтому этот показатель является желанным для данной схемы.

Заключение

Вот мы и рассмотрели, что собой представляет зарядка аккумулятора. Схема данного устройства может быть выполнена и на одной плате, но следует отметить, что это довольно сложно. Поэтому их делают многослойными.

В рамках статьи вашему вниманию были представлены различные принципиальные схемы, которые дают понять, как же, собственно, происходит зарядка аккумуляторов. Но необходимо понимать, что это только общие изображения, а более детальные, имеющие указания протекающих химических реакций, являются особенными для каждого типа батареи.

fb.ru

Лампа накаливания как ограничитель тока (20.03.2016).

← Прикуривание проводами — убийство для АКБ (20.03.2016).   Подключение защитного диода последовательно (25.03.2016). →
Было доказано, что сильно разряженная АКБ автомобиля потребляет силу тока более 15А, а сильно разряженная АКБ ИБП — 6А. С учетом, что это составляет от 38 до 85 процентов от емкости, АКБ стало как-то жалко. Задумка об ограничителе тока привела к сложным электронным схемам, нужно было найти способ попроще. И решение оказалось простым: установка последовательно с АКБ лампы накаливания 12В.

Казалось бы, бред. Сопротивление лампы измеряется в целых омах, а сопротивление АКБ составляет десятые и сотые доли ома. Последовательное подключение должно привести к перераспределению напряжения: лампе вольт 12, АКБ вольта 2 — и АКБ не будет заряжаться. Но многие из людей недостаточно умны, чтобы предсказать реальный результат.

Лампа накаливания (и галогенная) работает как бареттер, имея изменяемое собственное сопротивление, в зависимости от нагрева (протекающего тока и падающего на ней напряжения), что в свою очередь меняет падение напряжения на лампе. В итоге лампа поддерживает относительно постоянный ток в цепи, ограничивает этот ток, защищает цепь от КЗ — и имея малое сопротивление очень слабо обворовывает напряжение у нагрузки, позволяя даже проводить заряд АКБ (возможно, более медленный).

Чем больше мощность лампы — тем большую силу тока она позволит пропускать. Если добавить к этому возможность установки нескольких ламп параллельно — можно регулировать и силу тока всей цепи, и сопротивления связки ламп. И чем больше ламп — тем более экономична цепь, т.к. общее сопротивление ламп меньше, и светят они меньше. Аналогично при сравнении свечения ламп 21Вт и 55Вт: 55Вт светится гораздо тусклее, несмотря на больший протекающий ток. И со степенью заряда АКБ свет все тусклее, а далее и вовсе пропадет — своеобразный индикатор заряда АКБ: «осталось немного». Ни одна из ламп не вызвала ослепления при взгляде на нее.

(добавлено 21.03.2016) Зарядка АКБ происходит не до конца. Когда ток дошел до минимального значения 1.1А, АКБ перестала заряжаться (при этом ток 1.1А продолжает течь, чудеса). Итого на АКБ стало 11.8В. Значит, нужно в схему добавить еще транзистор, который при напряжении на АКБ 12В отключал лампу и подавал ток напрямую.

Есть зависимость от сопротивления лампы: чем мощнее лампа, тем меньше сопротивление и тем меньше падение напряжения на ней. Надо будет потом с лампой 100Вт попробовать. И больше времени заряжать: вдруг процесс просто увеличился в 1.5 раза по времени.

(добавлено 25.03.2016) Зарядка АКБ происходит до конца (теоретический эмпирический расчет), но: время заряда настолько велико (несколько суток/недель), что можно считать добавление от 21 числа истиной.

(добавлено 26.03.2016) Ждите проверки на АКБ ИБП. Окончательно добил АКБ автомобильную: жила она с дохлой банкой — а теперь еще и пластины посыпались. Возможно, в этом виноват тестовый ток 15А, пущенный на протяжение 1 минуты. Может, из-за осыпавшихся пластин и не кончалась «зарядка» длительное время: закороченные пластины успешно проводили ток 1.1А — опять никаких чудес: просто недостаток знаний.

(добавлено 27.03.2016) Все, кто пробовал способ заряда АКБ через лампочку, в 1 голос говорят, что с АКБ просто совпало в плане кончины: лампа не вредит АКБ. Это логично: не повышает силу тока, а ограничивает; не повышает напряжение, а понижает. Причем понижение напряжения дает возможность зарядки нестандартными источниками питания, напряжение которых выбирается в зависимости от мощности лампы (чем меньше мощность — тем больше превышение вольтажа можно позволить). Правильный расчет позволяет даже заряжать АКБ при помощи ЗУ от ноутбука на 19В. В моем случае, когда АКБ перестала принимать заряд (и расходовала энергию на замкнутые пластины и бурление электролита), на клеммах АКБ было 12.7В при 14.4В на источнике питания — значит, лампа 21Вт отбирала 1.7В.

В итоге при помощи обычного адаптера питания и лампочки можно создать полноценное ЗУ для АКБ. Но это — повод проверить на практике: адаптеров дома море, ламп море. Главное: во время теста не проворонить повышение напряжения на клеммах АКБ выше 14.4В, если лампа подобрана неверно.

(добавлено 29.03.2016) Оказывается, галогенные лампы достаточно хрупкие. Не знаю как, но лампа 55Вт при надавливании на металлический кожух оказалась повреждена. Причем визуальных следов повреждения нет — а ток в лампе потек в обход спирали. Знаю, что кварцевое стекло руками трогать нельзя — однако лампы не перегорали и не выходили из строя другими путями: либо напряжение ниже номинального, либо ток, либо время горения.

(добавлено 30.03.2016) Успешная зарядка АКБ ИБП через лампу накаливания 21Вт. На автомобильной АКБ проверить не могу, т.к. нет исправной — но и АКБ ИБП тоже кислотная.

Таблица мощности ламп и ограничения ими тока:
— 100Вт, галогенная. Для АКБ авто: ток <3.6А, для АКБ ИБП: <3.2А — для ИБП не годится,
— 55Вт, галогенная. Для АКБ авто: <3А, для АКБ ИБП <2.9А — для ИБП не годится;
— 21Вт, накаливания. Для АКБ  авто: <1.2-1.7А, АКБ ИБП: <1А — для авто не годится;
— 10Вт, накаливания. Для АКБ ИБП <0.3А — годится для маленьких аккумуляторов?
— 5Вт, накаливания. Для АКБ ИБП <0.2А — годится для маленьких аккумуляторов?

Данные указаны для 5-годовалых АКБ Bosch S4 019 и АКБ ИБП APC 7А·ч, разряженных до 6.6В. Был сделан выбор в пользу 100Вт для АКБ авто и 21Вт для АКБ ИБП.

Светодиодные лампы для данной цели непригодны.

(добавлено 12.04.2016) Лампа дает гигантские возможности. Переделанный из БП лабораторный источник питания + лампа = ЗУ для любых аккумуляторов. Единственное условие: правильный подбор лампы, чтобы не было сверхтока. Полагаю, что для сотовых это будет лампа 5Вт.

(добавлено 12.04.2017) Добавляю ссылки о сопротивлениях ламп накаливания 12В, 24В и 220В. Например, сейчас буду использовать лампу 220В/25Вт для того, чтобы не использовать трансформатор при подключении двигателя от микроволновки в роли мешалки для реактивов.

www.bad-good.ru

Индикатор-ограничитель зарядки аккумулятора — Меандр — занимательная электроника

Читать все новости

При одновременной зарядке не­скольких последовательно вклю­чённых Ni-Cd или Ni-Mh аккумуляторов типоразмера АА или ААА нередко воз­никает ситуация, когда некоторые из них ещё не зарядились, а другие уже перезаряжаются. Обусловлено это тем, что реальная ёмкость аккумуляторов, особенно если они «не первой свежес­ти», может существенно отличаться от номинальной и при зарядке одним током одни из них заряжаются быстрее других. Чтобы исключить такую ситуа­цию, можно собрать индикатор-огра­ничитель, который подключают парал­лельно каждому аккумулятору. Уст­ройство предназначено для установки в простые ЗУ, в которых зарядка произво­дится стабильным током и отсутствует контроль напряжения каждого аккуму­лятора или времени зарядки.

Схема устройства показана на рис. 1. Оно представляет собой повышающий преобразователь напряжения, нагру­женный светодиодом, и собрано на специализированной микросхеме NCP1400ASN33T1 (NCP1400ASN50T1). Индикатор-ограничитель, подключён­ный параллельно заряжаемому аккуму­лятору G1, тока практически не потреб­ляет, пока напряжение аккумулятора менее 1,42 В. Поэтому весь ток зарядки «идёт в дело», т. е. заряжает аккумуля­тор. Когда напряжение превысит ука­занное выше значение, преобразователь включается, потребляемый им ток увеличивается, а зарядный ток суще­ственно уменьшается, вплоть до нуля. Светодиод начинает светить, сигнали­зируя об окончании зарядки аккумуля­тора.

Рис. 1

Стабилитрон VD1 защищает пре­образователь от повышенного напря­жения, которое может появиться, если аккумулятор не установлен, вышел из строя или из-за плохого контакта в дер­жателе. Преобразователь включается, если напряжение на управляющем входе СЕ превысит 0,5…0,6 В. Оно поступает на этот вход через диоды VD2 и VD3, и его значение будет меньше на величину падения напряжения на них. Ток через эти диоды, а значит, и напря­жение на них задаёт резистор R1, и его подборкой можно установить порог включения преобразователя напряже­ния. В данном случае установлено пороговое напряжение 1,42 В.

Ток, потребляемый преобразовате­лем, превышает в 2.5…3 раза ток, про­текающий через светодиод. Если при­менить светодиод белого цвета свече­ния, при напряжении 3,3 В ток через него будет зависеть в основном от его типа и, возможно, потребуется его под­борка. Если, например, светодиод по­требляет ток 20 мА, преобразователь будет потреблять ток около 50 мА. Именно на это значение и будет умень­шаться зарядный ток после включения преобразователя. Чтобы установить желаемый потребляемый ток, надо применить светодиод зелёного или жёлтого цвета свечения, включив последовательно с ним резистор R2. Подборкой этого резистора и устанав­ливают ток, потребляемый всем пре­образователем. Можно применить све­тодиод красного цвета, но предвари­тельно надо проверить, чтобы он не светил при напряжении 1,4 В, некото­рые экземпляры на это способны.

Если применить малогабаритные элементы для поверхностного монта­жа, печатная плата устройства будет небольшой. Её чертёж показан на рис. 2. Она двухсторонняя. Через от­верстия в плате контактные площадки с двух сторон соединены между собой. Светодиод, конденсатор и резистор R2 установлены на одной стороне, осталь­ные элементы — на другой. Диоды CDLL4148 можно заменить выводными диодами серий КД521 и КД522. Ста­билитрон — маломощный на напряже­ние стабилизации 3…3.3 В. Резисторы и конденсатор — для поверхностного монтажа типоразмера 0805 или 1206. Дроссель должен быть рассчитан на ток 200. ..250 мА, подойдут дроссели — LQY4N, LQN4N, SDR0703, или выводной серии ЕС24. Светодиод может быть любой, а поскольку ток через него достаточно большой, применение све­тодиода повышенной яркости свечения необязательно.

Рис. 2

Размещение элементов на плате показано на рис. 3. Дополни­тельный резистор R2 устанав­ливают со стороны установки светодиода, предварительно сделав разрез в печатном про­воднике. Разрез и резистор R2 выделены на рис. 3 красным цветом. Внешний вид устрой­ства показан на рис. 4.

Рис. 3

Такой индикатор-ограни­читель удобно установить в ЗУ с током зарядки 60…80 мА (для аккумуляторов ёмкостью до 800 мА ч). В этом случае после включения светодиода аккумулятор будет продолжать подзаряжаться в несколько раз меньшим током. Для уве­личения потребляемого пре­образователем тока на его выходе надо установить два или три светодиода, каждый со своим резистором.

Рис. 4

Если в ЗУ зарядный ток 150. .200 мА (для аккумулято­ров ёмкостью до 1,5…2А·ч), следует применить микросхему с выход­ным напряжением 5 B (NCP1400ASN50T1) и последовательно со светодиодом установить токоограничивающий ре­зистор (все изменения для этого слу­чая выделены на рис. 1 красным цве­том). Подборкой этого резистора мож­но установить желаемый ток светодио­да. При этом ток, потребляемый пре­образователем, будет примерно в четыре раза больше. Возможно, при­дётся применить более мощный свето­диод или установить параллельно ещё * один-два светодиода, каждый со своим токоограничивающим резисто­ром. Следует учесть, что импульс тока через дроссель может достигать 400 мА, поэтому он должен быть рас­считан на этот ток.

Необходимо отметить, что напряжение выключения преобразова­теля меньше напряжения вклю­чения примерно на 0,1 В. Если после включения преобразова­теля аккумулятор немного раз­рядится, преобразователь вы­ключится и зарядка продолжит­ся.

Налаживание сводится к подборке резисторов. На уст­ройство подают напряжение 1,42 В и подборкой резистора R1 добиваются включения преобразователя. Сопротивление этого резистора не должно быть более 200 кОм, если получится больше, необходимо подобрать другие диоды VD2 и VD3. Порог включения контролируют не­сколько раз, подав на преобра­зователь напряжение 1,2 В и плавно увеличивая его до 1,5 В. При необходимости налажива­ние повторяют. Как изменить потребляемый преобразовате­лем ток, было сказано выше.

Автор: И. НЕЧАЕВ, г. Москва

Возможно, Вам это будет интересно:

meandr.org

Ограничение зарядного тока конденсаторной батареи

Читать все новости

Известные схемы ограничения зарядного тока конденса­торов или слишком сложные [1], или маломощные [2], или уменьшают КПД установки [3], или, имея в своем составе дополнительные элементы коммутации, требуют определен­ного алгоритма включения устройства.

Предлагаемый вариант ограничителя зарядного тока хотя и не отличается дешевизной и требует подбора элементов при наладке, но очень надежен и допускает даже очень кратковременное пропадание напряжения сети (так называемая «просадка») и защищает аппаратуру от серии «просадок», что является притчей во языцех для силовой электроники.

Источник кратковременного сверхтока для проверки за­щитных устройств показан на фото в начале статьи.

Простой ограничитель зарядного тока

Схема, изображенная на рис.1 состоит из маломощного реле К1, контактора К2, резистора R1, ограничивающего за­рядный ток батареи конденсаторов С1…Сn, величина рези­стора R2 определяет величину тока включения реле К1, а, следовательно, и напряжение, до которого успеют зарядится конденсаторы батареи, перед включением контактора К2, для минимизации броска тока. Резистор R3, подключаемый по­сле срабатывания реле и контактора, уменьшает рабочий ток через реле и уменьшает разницу напряжений срабатывания и отпускания реле.

Рис. 1

Рис. 2

Рис. 3

С целью уменьшения мощности (и размеров) резисторов R2 и R3 желательно подобрать очень чувствительное реле с минимальным ток срабатывания. Среди реле встречаются эк­земпляры с током срабатывания меньше 5 мА, например, ти­па РЭС-54 с напряжением срабатывания 24 В (рис.4,а) или типа MY4 с напряжением срабатывания 230 В (рис.4,6).

Рис. 4

Используя силовой геркон (так называемый герсикон, рис.5,а), намотав на него несколько тысяч витков тонкого провода (рис.5,б, рис.5,в), можно добиться тока срабатыва­ния меньше 3 мА. Следует напомнить, что обычные (мало­габаритные) герконы не рассчитаны на работу с напряжени­ем питающей сети 230 В / 50 Гц, и использовать их в дан­ных условиях не допустимо.

Рис. 5

Резистор R1 можно заменить малогабаритной лампой на­каливания на напряжение 230 В (например, галогенной, рис.2), предусмотрев пожаробезопасное крепление. В таком случае даже длительное короткое замыкание не вызовет необрати­мых процессов в устройстве, а лампа будет сигнализиро­вать о «форс-мажорных» обстоятельствах. UR1 на рис.2 — это варистор, еще значительней уменьшающий разницу на­пряжения срабатывания и отпускания реле К1. Элементы С1, С2 и L1 на рис.2 — входной помехоподавляющий фильтр.

Если в качестве токоограничительного элемента приме­нить две последовательно включенные лампы (рис.3), то на­дежность схемы увеличится, а температура внутри корпуса (при аварии) — уменьшится. К тому же, в таком случае мож­но использовать дешевые малогабаритные китайские «ква- зигалогенки».

Некоторые «креативные» фирмы, выпускающие трехфаз­ные контакторы, «забывают» устанавливать блок-контакты (автор встречал контакторы фирмы Siemens, на которых да­же не предусмотрено место для «пристегивания» блок-контактных мостиков). В таком случае коммутация дополни­тельного резистора R3 производится дополнительной группой самого реле К1 (рис.2), т.е. К1 должно иметь две группы переключательных контактов (или одну Н.О. группу и одну Н.З. группу контактов). Но в этом случае, при наладке схе­мы, необходимо убедиться в адекватном срабатывании ре­ле при достаточно медленном нарастании напряжения, т.к. возможна ситуация, когда реле будет «строчить», а контак­тор не включится. Спровоцировать (на время наладки) мед­ленное нарастание напряжения можно преднамеренным уве­личением сопротивления R1.

Ограничитель зарядного тока для преобразователей частоты

Для устройств, питающихся от однофазной сети, еще од­ной проблемой является низкое напряжение звена постоян­ного тока — не более 320 В, что недостаточно для питания преобразователей частоты (ПЧ), особенно, если нужно полу­чить выходную частоту ПЧ более 50 Гц. Как известно, чтобы не терять вращающий момент на валу двигателя, вместе с увеличением частоты, требуется линейное увеличение на­пряжения питания двигателя. Для синхронной частоты вра­щения асинхронного двигателя 6000 об./мин (100 Гц), требу­ется линейное напряжение 760 В (для двигателя 3×380 В). Получить подобное напряжение позволяет схема удвоителя сетевого напряжения, изображенная на рис.3. Контролиро­вать с помощью реле нужно, именно, удвоенное выпрямлен­ное напряжение сети, т.к. в противном случае есть опасность «не заметить» сбой электроснабжения или нарушение в схе­ме устройства.

При отсутствии варистора в схеме рис.3 резисторы R1 и R2 должны быть увеличены (в зависимости от чувствитель­ности реле К1) до 100…130 кОм, а R1 желательно сделать составным (для распределения высокого напряжения). В схеме достаточно легко можно организовать любые виды за­щит посредством датчиков (SF1, SF2, SK1), отключающих или закорачивающих реле К1 (рис.3). Стабилитрон VD3 ограни­чивает напряжение на катушке реле К1 и на контактах дат­чиков. Датчики могут быть температурными, токовыми, дав­ления, напряжения и прочее. Замыкающий контакт датчика предпочтительней размыкающему (например, датчику температуры SK1 на рис.3) — в этом случае не нагружается стабилитрон VD3 и последнему не требуется радиатор.

Ограничитель зарядного тока для инверторного блока питания

Если разрабатываемое (или модернизируемое) устройст­во не является преобразователем частоты или сварочным инвертором, а, к примеру, это мощный инверторный блок пи­тания, запускаемый без нагрузки, или с минимальной нагруз­кой (для, допустим, металлообрабатывающего комплекса), то К1 можно запитать от вторичного источника блока пита­ния (рис.6). Во время работы, если кратковременно исчез­нет напряжение сети, то контактор К2 отключится самосто­ятельно, а К1 проконтролирует напряжение батареи конден­саторов косвенно и, в случае, значительного падения напря­жения не позволит К2 включиться до окончания повторного подзаряда батареи.

Рис. 6

Ограничитель зарядного тока с твердотельными контакторами

Используя современную материальную базу электроники, очень перспективными в этой теме выглядят т.н. твердотельные реле и контакторы (SSR, SSC, рис.4,в) — один та­кой элемент может заменить несколько других (рис.7). Кро­ме экономии места и упрощения схемы, эти элементы сами могут несколько ограничивать зарядный ток, т.к. имеют встро­енную функцию коммутации при переходе тока через нуль (Zero Switching). Недостаток таких твердотельных контакто­ров — это падение напряжения на них зависящее от тока нагрузки, зато они имею значительно большую надежность чем электромагнитные контакторы.

Рис. 7

Литература:

  1. А. Фролов // Радио. — 2001. — №12. — С.38.
  2. А. Зызюк // РадиоАматор. — 2007. — №01. — С.ОЗ.
  3. Э. Мурадханян // Радио. — 2004. — №10. — С.35.

Автор: Александр Шуфотинский, г. Кривой Рог
Источник: Электрик №12, 2016

Возможно, Вам это будет интересно:

meandr.org

Зарядное устройство для автомобильных аккумуляторов — Поделки для авто



Компьютерный блок питания (КБП) можно легко переделать в зарядное устройство (ЗУ) для аккумуляторов стартерных автомобилей с емкостью до 120А/час.

Для переделки подойдут КБП в которых стоит микросхема ШИМ контроллера TL494 или его аналог К7500 (кстати, буквы зависят от фирмы-производителя, так что достаточно ориентироваться на цифры).

Переделка состоит из 2-х основных шагов. Это получение на выходе напряжения около 15В и добавление регулируемого стабилизатора тока для установки нужного тока зарядки. Т.е. мы получим автоматическое ЗУ, заряжающее стабильным током. По мере зарядки ток будет уменьшаться и в конце будет равен нулю.

КБП имеет несколько выходных напряжений: 3.3В, 5В, 12В. Нам понадобится только шина 12В (желтые провода). Для зарядки авто аккумуляторов требуется напряжение 14.5 -15В, следовательно, нам нужно повысить 12В до этого уровня.

Проверяем выбранный КБП на работоспособность. Для его запуска без компьютера надо соединить зеленый провод с черным (земля). Мультиметром проверяем все выходные напряжения, если все в порядке снимаем плату из корпуса и отпаиваем ненужные выходные провода. Оставляем только пару желтых, пару черных и зеленый. Рекомендую использовать достаточно мощный паяльник.

Далее с помощью мультиметра находим резистор, идущий от первого вывода контроллера 7500 к 12В-ой шине. В моем БП это 27кОм. Затем отпаиваем один конец этого резистора (назовем его Rx) от платы. Берем переменный резистор около 10кОм (мощность неважна), соединяем проводом средний и один из крайних выводов друг с другом и с точкой на плате откуда выпаяли вывод Rx. Другой крайний вывод переменного резистора соединяем с оставшимся в воздухе выводом Rx. Т.о. мы получили последовательное соединение Rx и переменного резистора. Этим переменным резистором мы должны выставить выходное напряжение около 15В.

Стабилизатор или ограничитель тока построен на базе операционного усилителя (ОУ) LM358, впрочем, подойдут любые другие. В корпусе этого ОУ 2 элемента, но нам достаточно одного. ОУ подключен по схеме компаратора, сравнивающего напряжение на низкоомном резисторе R3 с опорным, который задается стабилитроном

Если регулятором R1 мы меняем это напряжение, то компаратор стремится сбалансировать напряжение на входах 2 и 3 изменением выходного напряжения (вывод1), тем самым управляя полевым транзистором. А он управляет током через нагрузку. Полевик должен быть достаточно мощным, т.к. через него проходит весь зарядный ток. Я применил IRFZ44 (можно ставить любой с аналогичными параметрами).

Его надо обязательно поставить на теплоотвод, я просто прикрутил к корпусу. Нарисовал печатную плату для стабилизатора тока и спаял детали.Плата в формате .lay …


Теперь соединяем все узлы в соответствии с рисунком и монтируем в корпус.

На переднюю панель выведены регулятор ограничивающий ток заряда, стрелочный амперметр постоянного тока со шкалой до 10А (можно и цифровой), тумблер замыкающий зеленый провод с землей и выходные клеммы.

Автор; АКА КАсьян

Похожие статьи:

xn—-7sbgjfsnhxbk7a.xn--p1ai

Как заряжать автомобильный аккумулятор — простое объяснение.

Как заряжать автомобильный аккумулятор

С проблемой «севшего» аккумулятора сталкивались почти все автомобилисты. Не будем вдаваться в причины произошедшего, рассмотрим, как и чем исправить сложившуюся ситуацию. В данном случае проблему зарядки автомобильного аккумулятора можно решить двумя способами.

Способ первый

Это, так называемый, быстрый способ подзарядки аккумулятора для тех, кто ограничен во времени, а машину нужно завести как можно быстрее. Батарею в этом случае можно не снимать с автомобиля. Что же нужно сделать для зарядки автомобильный аккумулятор в таком случае?

Итак, по порядку. Отсоединяем от батареи оба провода (снимаем их с клемм и отодвигаем подальше). Подсоединяем провода выхода подзарядного устройства к клеммам аккумулятора согласно маркировке – «+» с положительной клеммой, а «-» — с минусовой. На зажимах подзарядника указана полярность, ее нельзя перепутать!

Выставляем регулятор тока на максимум и включаем зарядное в сеть питания. Минут через 20-30 отсоединяем провода зарядника и закрепляем автомобильные провода на клеммах батареи. Опять-таки, соблюдайте полярность! Следующим действием запускаем двигатель. Пускового тока вполне хватит на запуск, а дальше генератор все сделает сам. Для уверенности можно погонять двигатель минут 5-10 на больших оборотах.

Способ второй

Если времени у вас достаточно, то лучше провести полную зарядку автомобильного аккумулятора. Для этого освобождаем батарею от проводов и извлекаем ее из-под капота. Заносим ее в гараж или, за неимением такового, в квартиру. Проводить процесс подзарядки нужно проводить в сухом помещении. Подготавливаем аккумулятор к процессу – очищаем клеммы от окислов и прочищаем вентиляционные отверстия в пластмассовых пробках банок. Затем закрепляем зажимы проводов зарядного устройства, «плюс» — к плюсу, «минус» — к минусу. Выставляем зарядный ток на минимум и включаем зарядник в розетку.

Внимание! Сначала подсоединяем провода к аккумулятору, а только потом включаем в сеть, а не наоборот! Полная зарядка батареи происходит за 24 ч. При полном заряде аккумулятора на подзарядном устройстве загорится индикатор окончания процесса. Автомобильный источник питания готов к эксплуатации и его можно установить в машину.

Какой зарядник выбрать?

Как заряжать автомобильный аккумулятор мы уже знаем. Теперь рассмотрим вопросы, которые возникают при выборе устройства подзарядки. В продаже встречаются два типа зарядников. У одних на передней панели, рядом с регулятором, установлен вольтметр, у других – амперметр. Естественно, появляется вопрос – в чем разница? Для аккумулятора, в принципе, разницы нет. Он зарядится и тем и другим устройством. Разница будет в затраченном личном времени. Устройства, оборудованные амперметром, производят заряд на основе постоянной величины силы тока.

То есть, аккумулятор в 60А*ч требует для заряда ток в 6 ампер. Величина зарядного тока должна составлять 0,1 от емкости батареи. В процессе зарядки сила зарядного тока падает и необходимо периодически корректировать ее регулятором. К тому же, в конце процесса из аккумулятора происходит обильное выделение газа.

Чтобы снизить газовыделение, придется плавно снижать силу тока по мере повышения зарядного напряжения. Батарея будет считаться заряженной, если сила тока на амперметре не будет изменять свое значение на протяжении 1-2 ч. Недостаток таких устройств — они требуют постоянного вашего присутствия.

Устройства, оборудованные вольтметром, проводят заряд на основе постоянного напряжения. В этом случае на заряженность батареи напрямую влияет зарядное напряжение. Чем выше подаваемое напряжение, тем меньше времени тратится на зарядку. При напряжении в 16,4 В аккумулятор полностью заряжается в течение 24 часов. Однако нужно знать, что в момент включения подсоединенного к батарее зарядного устройства, выходной ток может быть 40-50 А (на эту велич

mas-te.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *