Определение генератор – Генератор переменного тока — Википедия

Содержание

Что такое генератор? — журнал «Рутвет»

Слово генератор происходит от латинского generator и означает «производитель». В общем понятии генератор является устройством, аппаратом или машиной, который производит какой-нибудь продукт. В их функции входит также преобразование одного вида энергии в другой. В электротехнике генератор – это машина, вырабатывающая электрическую энергию, т.е. преобразующий механическую энергию в электрическую. Их два вида: генераторы постоянного тока и генераторы переменного тока. Генератор постоянного тока – это вращающаяся машина, которая состоит из якоря, статора и коллекторно-щеточной системы и производит постоянное напряжение, необходимое для питания систем возбуждения синхронных двигателей и генераторов в промышленности и электростанциях. Наилучший его режим работы – режим самовозбуждения при работе электромашинным возбудителем, что делает такие машины более экономичными. Такие генераторы также используются как источник постоянного тока для заряда и подзаряда аккумуляторных батарей, в электросварке постоянным током (САГ-ы), автомобилях и летающих аппаратах. Генератор переменного тока – тоже вращающаяся машина и состоит из статора, ротора и системы возбуждения. Эта синхронная машина вырабатывает переменный электрический ток частотой 50 или 60 Гц для нужд народного хозяйства в крупных электростанциях (ГЭС, ГРЭС, АЭС, ТЭЦ, ДЭЦ и др.), а также в переносных электростанциях («движки», ЖСК, «дизели» и др.) и на суднах.
В радиотехнике и электронике генераторы преобразуют электрическую энергию в энергию электромагнитных волн определенной частоты. Поэтому их коротко называют генераторами частоты. В основном различают два вида: генераторы низких (ГНЧ) и высоких частот (ГВЧ). Генераторы низкой частоты вырабатывают сигналы частоты звукового спектра (примерно от нуля до нескольких сотен кГц), поэтому их еще называют генераторами звуковых частот (ГЗЧ). Их другой разновидностью являются генераторы импульсов, которые преобразуют электрическую энергию в энергию импульсов, повторяющиеся по определенной частоте. ГНЧ с широким спектром частоты и гармоник называются мультивибраторами. Все эти генераторы собираются из электронных приборов (транзисторы, диоды, микросхемы). Они используются в различных сферах жизни как источник сигналов (электрозвонок, зуммер, металлоискатели, кабелеискатели, измерительные приборы, генераторы испытательных сигналов, преобразователи постоянного тока в переменный, медицинская аппаратура и др.). Кроме этого, мультивибраторы широко используются в производстве игрушек. Генераторы высокой частоты создаются на той элементной базе, что и ГНЧ, но с различием, что они вырабатывают электромагнитных волн от сотни кГц до десятка ГГц и для стабилизации частоты используются пьезоэлементы (кварцевые резонаторы), а также высокочастотные варикапы (вариконды). Эти генераторы применяются повсеместно в радиопередатчиках, радио- и телеретрансляторах, на станциях сотовой и космической связи, в мобильных телефонах, радиотелефонах, рациях, радарах, центрах управления полетом и медицинской аппаратуре. Надо заметить, что до недавнего времени элементная база ГНЧ и ГВЧ в основном опиралась на электронные лампы. Сейчас электронные лампы почти полностью вытеснены транзисторами и микросхемами. В промышленности генераторами называют также установки, которые преобразуют одно вещество в другое. Например, ацетиленовый генератор – для производства ацетилена из карбида кальция; парогенератор, ледогенератор, газогенератор – соответственно для производства водяного пара, льда и газа. В компьютерной и вычислительной технике отдельные программы или утилиты называются генераторами. Можно привести в качестве примера кейгенераторы и генераторы кодов (ключей, паролей), генераторы случайных чисел.

www.rutvet.ru

Генератор тока. Устройство и прицип действия генератора.

Генератор тока преобразует механическую (кинетическую) энергию в электроэнергию. В энергетике пользуются только вращающимися электромашинными генераторами, основанными на возникновении электродвижущей силы (ЭДС) в проводнике, на который каким-либо образом действует изменяющееся магнитное поле. Ту часть генератора, которая предназначена для создания магнитного поля, называют индуктором, а часть, в которой индуцируется ЭДС – якорем.

Вращающуюся часть машины называют ротором, а неподвижную часть – статором. В синхронных машинах переменного тока индуктором обычно является ротор, а в машинах постоянного тока – статор. В обоих случаях индуктор представляет собой обычно двух- или многополюсную электромагнитную систему, снабженную обмоткой возбуждения, питаемой постоянным током (током возбуждения), но встречаются и индукторы, состоящие из системы постоянных магнитов. В индукционных (асинхронных)

генераторах переменного тока индуктор и якорь не могут четко (конструктивно) различаться друг от друга (можно сказать, что статор и ротор одновременно являются и индуктором и якорем).

Более 95 % электроэнергии на электростанциях мира производится при помощи синхронных генераторов переменного тока. При помощи вращающегося индуктора в этих генераторах создается вращающееся магнитное поле, наводящее в статорной (обычно трехфазной) обмотке переменную ЭДС, частота которой точно соответствует частоте вращения ротора (находится в синхронизме с частотой вращения индуктора). Если индуктор, например, имеет два полюса и вращается с частотой 3000 r/min (50 r/s), то в каждой фазе статорной обмотки индуцируется переменная ЭДС частотой 50 Hz. Конструктивное исполнение такого генератора упрощенно изображено на рис. 1.

Рис. 1. Принцип устройства двухполюсного синхронного генератора. 1 статор (якорь), 2 ротор (индуктор), 3 вал, 4 корпус. U-X, V-Y, W-Z – размещенные в пазах статора части обмоток трех фаз

Магнитная система статора представляет собой спрессованный пакет тонких стальных листов, в пазах которого располагается статорная обмотка. Обмотка состоит из трех фаз, сдвинутых в случае двухполюсной машины друг относительно друга на 1/3 периметра статора; в фазных обмотках индуцируются, следовательно, ЭДС, сдвинутые друг относительно друга на 120o. Обмотка каждой фазы, в свою очередь, состоит из многовитковых катушек, соединенных между собой последовательно или параллельно. Один из наиболее простых вариантов конструктивного исполнения такой трехфазной обмотки двухполюсного генератора упрощенно представлен на рис. 2 (обычно число катушек в каждой фазе больше, чем показано на этом рисунке). Те части катушек, которые находятся вне пазов, на лобовой поверхности статора, называются лобовыми соединениями.

Рис. 2. Простейший принцип устройства статорной обмотки трехфазного двухполюсного синхронного генератора в случае двух катушек в каждой фазе. 1 развертка поверхности магнитной системы статора, 2 катушки обмотки, U, V, W начала фазных обмоток, X, Y, Z концы фазных обмоток

Полюсов индуктора и, в соответствии с этим, полюсных делений статора, может быть и больше двух. Чем медленнее вращается ротор, тем больше должно быть при заданной частоте тока число полюсов. Если, например, ротор вращается с частотой 300 r/min, то число полюсов генератора, для получения частоты переменного тока 50 Hz, должно быть 20. Например, на одной из крупнейших гидроэлектростанций мира, ГЭС Итайпу (Itaipu, см. рис. 4) генераторы, работающие на частоте 50 Hz, исполнены 66-полюсными, а генераторы, работающие на частоте 60 Hz – 78-полюсными.

Обмотка возбуждения двух- или четырехполюсного генератора размещается, как показано на рис. 1, в пазах массивного стального сердечника ротора. Такая конструкция ротора необходима в случае быстроходных генераторов, работающих при частоте вращения в 3000 или 1500 r/min (особенно для турбогенераторов, предназначенных для соединения с паровыми турбинами), так как при такой скорости на обмотку ротора действуют большие центробежные силы. При большем числе полюсов каждый полюс имеет отдельную обмотку возбуждения (рис. 3.12.3). Такой явнополюсный принцип устройства применяется, в частности, в случае тихоходных генераторов, предназначенных для соединения с гидротурбинами (гидрогенераторов), работающих обычно при частоте вращения от 60 r/min до 600 r/min.

Очень часто такие генераторы, в соответствии с конструктивным исполнением мощных гидротурбин, выполняются с вертикальным валом.

Рис. 3. Принцип устройства ротора тихоходного синхронного генератора. 1 полюс, 2 обмотка возбуждения, 3 колесо крепления, 4 вал

Обмотку возбуждения синхронного генератора обычно питают постоянным током от внешнего источника через контактные кольца на валу ротора. Раньше для этого предусматривался специальный генератор постоянного тока (возбудитель), жестко связанный с валом генератора, а в настоящее время используются более простые и дешевые полупроводниковые выпрямители. Встречаются и системы возбуждения, встроенные в ротор, в которых ЭДС индуцируется статорной обмоткой. Если для создания магнитного поля вместо электромагнитной системы использовать постоянные магниты, то источник тока возбуждения отпадает и генератор становится значительно проще и надежнее, но в то же время и дороже. Поэтому постоянные магниты применяются обычно в относительно маломощных генераторах (мощностью до нескольких сотен киловатт).

Конструкция турбогенераторов, благодаря цилиндрическому ротору относительно малого диаметра, очень компактна. Их удельная масса составляет обычно 0,5…1 kg/kW, и их номинальная мощность можеь достигать 1600 MW. Устройство гидрогенераторов несколько сложнее, диаметр ротора велик и удельная масса их поэтому обычно 3,5…6 kg/kW. До настоящего времени они изготовлялись номинальной мощностью до 800 MW.

При работе генератора в нем возникают потери энергии, вызванные активным сопротивлением обмоток (потери в меди), вихревыми токами и гистерезисом в активных частях магнитной системы (потери в стали) и трением в подшипниках вращающихся частей (потери на трение). Несмотря на то, что суммарные потери обычно не превышают 1…2 % мощности генератора, отвод тепла, освобождающегося в результате потерь, может оказаться затруднительным. Если упрощенно считать, что масса генератора пропорциональна его мощности, то его линейные размеры пропорциональны кубическому корню мощности, а поверхностные размеры – мощности в степени 2/3. С увеличением мощности, следовательно, поверхность теплоотвода растет медленнее, чем номинальная мощность генератора. Если при мощностях порядка нескольких сотен киловатт достаточно применять естественное охлаждение, то при бoльших мощностях необходимо перейти на принудительную вентиляцию и, начиная приблизительно со 100 MW, использовать вместо воздуха водород. При еще больших мощностях (например, более 500 MW) необходимо дополнить водородное охлаждение водным. У крупных генераторах надо специально охлаждать и подшипники, обычно используя для этого циркуляцию масла.

Тепловыделение генератора можно значительно уменьшить путем применения сверхпроводящих обмоток возбуждения. Первый такой генератор (мощностью 4 MVA), предназначенный для применения на судах, изготовила в 2005 году немецкая электротехническая фирма Сименс (Siemens AG) [3.24]. Номинальное напряжение синхронных генераторов, в зависимости от мощности, находится обычно в пределах от 400 V до 24 kV. Использовались и более высокие номинальные напряжения (до 150 kV), но чрезвычайно редко. Кроме синхронных генераторов сетевой частоты (50 Hz или 60 Hz) выпускаются и высокочастотные генераторы (до 30 kHz) и генераторы пониженной частоты (16,67 Hz или 25 Hz), используемые на электрифицированных железных дорогах некоторых европейских стран. К синхронным генераторам относится, в принципе, и синхронный компенсатор, представляющий собой синхронный двигатель, работающий на холостом ходу и отдающий в высоковольтную распределительную сеть реактивную мощность. При помощи такой машины можно покрыть потребление реактивной мощности местных промышленных электропотребителей и освободить основную сеть энергосистемы от передачи реактивной мощности.

Кроме синхронных генераторов относительно редко и при относительно малых мощностях (до нескольких мегаватт) могут использоваться и асинхронные генераторы. В обмотке ротора такого генератора ток индуцируется магнитным полем статора, если ротор вращается быстрее, чем статорное вращающееся магнитное поле сетевой частоты. Необходимость в таких генераторах возникает обычно тогда, когда невозможно обеспечить неизменную скорость вращения первичного двигателя (например, ветряной турбины, некоторых малых гидротурбин и т. п.).

У генератора постоянного тока магнитные полюсы вместе с обмоткой возбуждения располагаются обычно в статоре, а обмотка якоря – в роторе. Так как в обмотке ротора при его вращении индуцируется переменная ЭДС, то якорь необходимо снабжать коллектором (коммутатором), при помощи которого на выходе генератора (на щетках коллектора) получают постоянную ЭДС. В настоящее время генераторы постоянного тока применяются редко, так как постоянный ток проще получать при помощи полупроводниковых выпрямителей.

К электромашинным генераторам относятся и электростатические генераторы, на вращающейся части которых путем трения (трибоэлектрически) создается электрический заряд высокого напряжения. Первый такой генератор (вращаемый вручную серный шар, который электризовался при трении об руку человека) изготовил в 1663 году мэр города Магдебурга (Magdeburg, Германия) Отто фон Гюрике (Otto von Guericke, 1602–1686). В ходе своего развития такие генераторы позволяли открывать многие электрические явления и закономерности. Они и сейчас не потеряли своего значения как средств проведения экспериментальных исследований по физике.

Первый магнитоэлектрический генератор изготовил 4 ноября 1831 года профессор Лондонского Королевского института (Royal Institution) Майкл Фарадей (Michael Faraday, 1791–1867). Генератор состоял из подковообразного постоянного магнита и медного диска, вращающегося между магнитными полюсами (рис. 3.12.4). При вращении диска между его осью и краем индуцировалась постоянная ЭДС. По такому же принципу устроены более совершенные униполярные генераторы, находящие применение (хотя относительно редко) и в настоящее время.

Рис. 4. Принцип устройства униполярного генератора Майкла Фарадея. 1 магнит, 2 вращающийся медный диск, 3 щетки. Рукоятка диска не показана

Майкл Фарадей родился в бедной семье и после начальной школы, в возрасте 13 лет, поступил учеником переплетчика книг. По книгам он самостоятельно продолжал свое образование, а по Британской энциклопедии ознакомился с электричеством, изготовил электростатический генератор и лейденскую банку. Для расширения своих знаний он начал посещать публичные лекции по химии директора Королевского института Гемфри Дэви (Humphrey Davy, 1778–1829), а в 1813 году получил должность его ассистента. В 1821 году он стал главным инспектором этого института, в 1824 году – членом Королевского общества (Royal Society) и в 1827 году – профессором химии Королевского института. В 1821 году он начал свои знаменитые опыты по электричеству, в ходе которых предложил принцип действия электродвигателя, открыл явление электромагнитной индукции, принцип устройства магнитоэлектрического генератора, закономерности электролиза и много других основополагающих физических явлений. Спустя год после вышеописанного опыта Фарадея, 3 сентября 1832 года, парижский механик Ипполит Пикси (Hippolyte Pixii, 1808–1835) изготовил по заказу и под руководством основоположника электродинамики Андре Мари Ампера (Andre Marie Ampere, 1775–1836) генератор с вращаемым вручную, как у Фарадея, магнитом (рис. 5). В якорной обмотке генератора Пикси индуцируется переменная ЭДС. Для выпрямления получаемого тока к генератору вначале пристроили открытый ртутный коммутатор, переключающий полярность ЭДС при каждом полуобороте ротора, но вскоре он был заменен более простым и безопасным цилиндрическим щеточным коллектором, изображенным на рис. 5.

Рис. 5. Принцип устройства магнитоэлектрического генератора Ипполита Пикси (a), график индуцируемой ЭДС (b) и график получаемой при помощи коллектора пульсирующей постоянной ЭДС (c). Рукоятка и конусная зубчатая передача не показаны

Генератор, построенный по принципу Пикси, впервые применил в 1842 году на своем заводе в Бирмингеме (Birmingham) для электропитания гальванических ванн английский промышленник Джон Стивен Вульрич (John Stephen Woolrich, 1790–1843), использовав в качестве приводного двигателя паровую машину мощностью 1 л. с. Напряжение его генератора составляло 3 V, номинальный ток – 25 A и кпд – около 10 %. Такие же, но более мощные генераторы быстро начали внедряться и на других гальванических предприятиях Европы. В 1851 году немецкий военный врач Вильгельм Йозеф Зинштеден (Wilhelm Josef Sinsteden, 1803–1891) предложил использовать в индукторе вместо постоянных магнитов электромагниты и питать их током от меньшего вспомогательного генератора; он же обнаружил, что кпд генератора увеличится, если стальной сердечник электромагнита изготовить не массивным, а из параллельных проволок. Однако идеи Зинштедена стал реально использовать только в 1863 году английский электротехник-самоучка Генри Уайльд (Henry Wilde, 1833–1919), который предложил, среди прочих нововведении, насадить машину-возбудитель (англ. exitatrice) на вал генератора. В 1865 году он изготовил генератор невиданной доселе мощности в 1 kW, при помощи которого он мог демонстрировать даже плавку и сварку металлов.

Важнейшим усовершенствованием генераторов постоянного тока стало их самовозбуждение, принцип которого запатентовал в 1854 году главный инженер государственных железных дорог Дании Сёрен Хьёрт (Soren Hjorth, 1801–1870), но не нашедшее в то время практического применения. В 1866 году этот принцип снова открыли независимо друг от друга несколько электротехников, в том числе уже упомянутый Г. Уайльд, но широко известным он стал в декабре 1866 года, когда немецкий промышленник Эрнст Вернер фон Сименс (Ernst Werner von Siemens, 1816–1892) применил его в своем компактном и высокоэффективном генераторе. 17 января 1867 года в Берлинской академии наук был прочитан его знаменитый доклад о динамоэлектрическом принципе (о самовозбуждении). Самовозбуждение позволило отказатьса от вспомогательных генераторов возбуждения (от возбудителей), что обусловило возможность выработки намного более дешевой электроэнергии в больших количествах. По этой причине год 1866 часто считают годом зарождения электротехники сильного тока. В первых самовозбуждающихся генераторах обмотку возбуждения включали, как у Сименса, последовательно (сериесно) с якорной обмоткой, но в феврале 1867 года английский электротехник Чарлз Уитстон (Charles Wheatstone, 1802–1875) предложил параллельное возбуждение, позволяющее лучше регулировать ЭДС генератора, к которому он пришел еще до сообщений о последовательном возбуждении, открытом Сименсом (рис. 6).

Рис. 6. Развитие систем возбуждения генераторов постоянного тока. a возбуждение при помощи постоянных магнитов (1831), b внешнее возбуждение (1851), c последовательное самовозбуждение (1866), d параллельное самовозбуждение (1867). 1 якорь, 2 обмотка возбуждения. Регулировочные реостаты тока возбуждения не показаны

Необходимость в генераторах переменного тока возникла в 1876 году, когда работающий в Париже русский электротехник Павел Яблочков (1847–1894) стал освещать городские улицы при помощи изготовляемых им дуговых ламп переменного тока (свечей Яблочкова). Первые необходимые для этого генераторы создал парижский изобретатель и промышленник Зеноб Теофиль Грамм (Zenobe Theophile Gramme, 1826–1901). С началом массового производства ламп накаливания в 1879 году переменный ток на некоторое время потерял свое значение, но снова обрел актуальность в связи с ростом дальности передачи электроэнергии в середине 1880-х годов. В 1888–1890 годах владелец собственной научно-исследовательской лаборатории Тесла-Электрик (Tesla-Electric Co., Нью-Йорк, США) эмигрировавший в США сербский электротехник Никола Тесла (Nikola Tesla, 1856–1943) и главный инженер фирмы АЭГ (AEG, Allgemeine Elektricitats-Gesellschaft) эмигрировавший в Германию русский электротехник Михаил Доливо-Добровольский (1862–1919) разработали трехфазную систему переменного тока. В результате началось производство все более мощных синхронных генераторов для сооружаемых тепло- и гидроэлектростанций.

Важным этапом в развитии турбогенераторов может считаться разработка в 1898 году цилиндрического ротора совладельцем швейцарского электротехнического завода Браун, Бовери и компания (Brown, Boveri & Cie., BBC) Чарлзом Эженом Ланселотом Брауном (Charles Eugen Lancelot Brown, 1863–1924). Первый генератор с водородным охлаждением (мощностью 25 MW) выпустила в 1937 году американская фирма Дженерал Электрик (General Electric), а с внутрипроводным водяным охлаждением – в 1956 году английская фирма Метрополитен Виккерс (Metropolitan Vickers).

www.eti.su

Генератор переменного тока — это… Что такое Генератор переменного тока?

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 15 декабря 2011.

Генератор переменного тока (альтернатор) является электромеханическим устройством, которое преобразует механическую энергию в электрическую энергию переменного тока. Большинство генераторов переменного тока используют вращающееся магнитное поле.

История

Системы производящие переменный ток были известны в простых видах со времён открытия магнитной индукции электрического тока. Ранние машины были разработаны такими пионерами, как Майкл Фарадей и Ипполит Пикси.

Фарадей разработал «вращающийся треугольник», действие которого было многополярным — каждый активный проводник пропускался последовательно через область, где магнитное поле было в противоположных направлениях. Первая публичная демонстрация наиболее сильной «альтернаторной системы» имела место в 1886 году. Большой двухфазный генератор переменного тока был построен британским электриком Джеймсом Эдвардом Генри Гордоном в 1882 году. Лорд Кельвин и Себастьян Ферранти также разработали ранний альтернатор, производивший частоты между 100 и 300 герц. В 1891 году Никола Тесла запатентовал практический «высокочастотный» альтернатор (который действовал на частоте около 15000 герц). После 1891 года, были введены многофазные альтернаторы.

Принцип действия генератора основан на действии электромагнитной индукции — возникновении электрического напряжения в обмотке статора, находящейся в переменном магнитном поле. Оно создается с помощью вращающегося электромагнита — ротора при прохождении по его обмотке постоянного тока. Переменное напряжение преобразуется в постоянное полупроводниковым выпрямителем.

Автомобильный генератор переменного тока. Приводной ремень снят.

Генератор переменного тока используется на современных автомобилях для заряда батареи аккумуляторов и для энергоснабжения автомобильной электрической системы. В генераторах переменного тока не используется коммутатор, это даёт большое преимущество над генераторами постоянного тока: они проще, легче и дешевле. Автомобильные генераторы переменного тока используют набор выпрямителей (диодный мост) для преобразования переменного тока в постоянный ток. Для производства постоянного тока с низкими пульсациями, автомобильные генераторы переменного тока имеют трёхфазную обмотку и трёхфазный выпрямитель.

Современные автомобильные генераторы переменного тока имеют встроенный в них регулятор напряжения. Ранее устанавливались регуляторы напряжения только аналогового вида. На данный момент реле регуляторы перешли на цифровой канал так называемая CAN шина.

Морские генераторы переменного тока

Морские генераторы переменного тока в яхтах с соответствующей адаптацией к солёно-водной окружающей среде.

Бесщёточные генераторы переменного тока

Бесщеточный генератор состоит из двух генераторов на одном валу. Маленькие бесщеточные генераторы могут выглядеть как одна единица, но две части легко идентифицируются на больших генераторах. Большая часть из двух является основным генератором и меньшая является возбудителем. Возбудитель имеет стационарные катушки поля и вращающегося якоря (мощность катушек). Основной генератор использует противоположные конфигурации с вращающимся полем и стационарные катушки. Мостовой выпрямитель (вращающийся выпрямитель) монтируется на пластину, прикрепленную к ротору. Ни щетки, ни контактные кольца не используются, что сокращает число изнашивающихся частей.

Индукционный генератор

В отличие от остальных генераторов, в основе работы индукционного генератора лежит не вращающееся магнитное поле, а пульсирующее, иначе говоря поле изменяется не в функции перемещения, а в функции времени, что в конечном счёте (наведение ЭДС) даёт такой же результат.

Конструкция индукционных генераторов предполагает размещение и постоянного поля и катушек для наведения ЭДС на статоре, ротор же остаётся свободным от обмоток, но обязательно имеет зубцовую форму, так как вся работа генератора основана на зубцовых гармониках ротора.

Генераторы для малой энергетики

Для мощностей до 100 кВт широкое применение нашли одно и трехфазные генераторы с возбуждением от постоянных магнитов. Применение высокоэнергетических постоянных магнитов состава неодим-железо-бор позволило упростить конструкцию и значительно уменьшить размеры и вес генераторов, что является критически важным для малой ветроэнергетики.

Конструкция генератора переменного тока

В самом общем случае, наиболее часто применяемый трехфазный генератор переменного тока состоит из явнополюсного ротора с одной парой полюсов (маломощные оборотистые генераторы) или 2 парами их, расположенными крестообразно (наиболее распространенные генераторы мощностями до нескольких сот киловатт. Такая конструкция не только позволяет более рационально использовать материал, но и для промышленной частоты переменного тока 50 Гц дает рабочую частоту вращения ротора 1500 оборотов в минуту, что хорошо согласуется с тяговыми оборотами дизельных двигателей этой мощности), а также статора с 3 (в первом случае) или 6 (во втором) силовыми обмотками и полюсами. Напряжение с силовых обмоток и есть то, которое подается потребителю.

Ротор может быть выполнен на постоянных магнитах только для весьма маломощных генераторов, во всех остальных случаях он имеет намотку т.н. обмотки возбуждения, то есть представляет из себя электромагнит постоянного тока, запитываемый во вращающемся роторе через щёточно-коллекторный узел с простыми кольцевыми контактами, более устойчивыми к износу нежели разрезной ламельный коллектор машин постоянного тока.

В сколько-либо мощном генераторе переменного тока с обмоткой возбуждения на роторе, неизбежно встает вопрос — какой величины ток возбуждения подавать на катушку? Ведь от этого зависит выходное напряжение такого генератора. И это напряжение должно поддерживаться в определенных рамках, например, 380 Вольт, вне зависимости от тока в цепи потребителей, значительная величина которого способна также значительно уменьшать выходное напряжение генератора. Кроме этого, нагрузка по фазам вообще может быть очень неравномерной.

Этот вопрос решается в современных генераторах, как правило введением в выходные цепи фаз генератора электромагнитных трансформаторов тока, соединенных вторичными обмотками треугольником или звездой, и дающими на выходе переменное трехфазное напряжение амплитудой единицы — десятки вольт, строго пропорциональное и согласованное по фазе с величиной тока нагрузки фаз генератора — чем больше потребляемый в данный момент по данной фазе ток, тем больше напряжение на выходе соответствующей фазы соответствующего токового трансформатора. Этим и достигается стабилизирующий и авторегулирующий эффект. Все три регулирующие фазы с вторичных обмоток токовых трансформаторов далее заводятся на обычный 3-фазный выпрямитель из 6 полупроводниковых диодов, и на выходе его получается постоянный ток нужной величины, и подаваемый на обмотку возбуждения ротора через щёточно-коллекторный узел. Схема может быть дополнена реостатным узлом для некоторой свободы регулирования тока возбуждения.

В устаревших или маломощных генераторах вместо токовых трансформаторов применялась система из мощных реостатов, с вычленением рабочего тока возбуждения за счет изменения падения напряжения на резисторе при изменении тока через него. Эти схемы были менее точны и гораздо менее экономичны.

В обоих случаях существует проблема появления начального напряжения на силовых обмотках генератора в момент начала его работы — действительно, если возбуждения ещё нет, то и току во вторичных обмотках токовых трансформаторов взяться неоткуда. Проблема, однако, решается тем что железо ярма ротора обладает некоторой способностью к остаточному намагничиванию, эта остаточная намагниченность оказывается достаточной для возбуждения в силовых обмотках напряжения в несколько вольт, достаточного для самовозбуждения генератора и выхода его на рабочие характеристики.

В генераторах с самовозбуждением — серьезную опасность представляет случайная подача внешнего напряжения промышленной электрической сети на силовые обмотки статора. Хотя это не приводит к каким-то негативным последствиям для самих обмоток генератора, мощное переменное магнитное поле от внешней сети эффективно размагничивает статор, в результате чего генератор теряет способность к самовозбуждению. В этом случае требуется начальная подача напряжения возбуждения от какого-то внешнего источника, например, автомобильного аккумулятора, иногда такая процедура полностью излечивает статор, но в некоторых случаях необходимость подачи внешнего возбуждения остается навсегда.

Главный генератор переменного тока

Главный генератор состоит из вращающегося магнитного поля, как было указано ранее, и неподвижной арматуры (генераторные обмотки)

Гибридные автомобили

Первый серийный гибридный автомобиль Toyota Prius. Модель 1997 года

Автомобиль, использующий для привода ведущих колёс разнородную энергию.

Современными автопроизводителями используется схема, позволяющая совмещать тягу двигателя внутреннего сгорания и электродвигателя. Это позволяет избежать работы ДВС в режиме малых нагрузок, а также реализовывать рекуперацию кинетической энергии, что повышает топливную эффективность силовой установки.

Иногда с гибридами ошибочно смешивают транспортные средства с электромеханической трансмиссией (например, тепловозы, некоторые тракторы и танки).

См. также

Ссылки

  • Alternators. Integrated Publishing (TPub.com).
  • Wooden Low-RPM Alternator. ForceField, Fort Collins, Colorado, USA.
  • Understanding 3 phase alternators. WindStuffNow.
  • Alternator, Arc and Spark. The first Wireless Transmitters. The G0UTY Homepage.
  • Thompson, Sylvanus P., Dynamo-Electric Machinery, A Manual for Students of Electrotechnics, Part 1, Collier and Sons, New York, 1902
  • White, Thomas H.,»Alternator-Transmitter Development (1891-1920)«. EarlyRadioHistory.us.

dic.academic.ru

Что такое генератор

Чтобы понять, что такое генератор, прежде всего, следует разобраться, для чего он предназначен и по какому принципу работает.

Разновидности электрогенераторов для выработки электроэнергии

Наиболее распространён электрогенератор – устройство для выработки электрической энергии путём преобразования механической.

Действие заключается в наведении ЭДС в перемещающемся в магнитном поле проводнике. При этом на его концах появляется напряжение, а при их подключении к нагрузке появляется электрический ток.

Энергетика применяет генератор электрического тока, работающий по принципу вращения классической электропроводной рамки в магнитном поле с образованием в ней ЭДС.

Если замкнуть через контактные кольца внешнюю цепь с нагрузкой, через неё будет проходить электрический ток, что будет видно по показаниям электрического прибора.

Образование в проводнике электрического тока при его вращении в магнитном поле

Направление движения электрического тока определяется, если отогнуть в сторону большой палец правой руки. В ладонь будут входить магнитные силовые линии, большой палец показывает направление, куда движется проводник, а остальные пальцы – направление течения индукционного тока.

Рамка связана со щётками, которые скользят по коллектору из двух полуколец. Таким путём система через подвижные контакты преобразует переменный ток.

Когда рамка находится в горизонтальном положении, направление ЭДС меняется на противоположное. За счёт этого ток во внешней цепи поддерживается постоянным. Он является пульсирующим, достигая максимума в вертикальном положении рамки, и нулевым – в горизонтальном (показано на рисунке выше – а). Пульсация уменьшается, если установить 2 витка перпендикулярно друг к другу, а количество пластин коллектора увеличить до четырёх (показано на рисунке выше – б).

Генератор постоянного тока

Первый генератор был изготовлен на постоянном токе, довольно долго выработка электрической энергии производилась с его применением.

Особенности конструкции

Магнитное поле вырабатывается индуктором, а та часть, где наводится ЭДС, называется якорем. Индуктором является неподвижная часть, называемая статором. Он делается на постоянных магнитах или в виде электромагнита из двух и более полюсов.

Генератор на постоянных магнитах является маломощным и на практике применяется редко. При этом пространство между магнитами обладает большим сопротивлением. В большинстве конструкций генераторов применяются электромагниты.

Генератор с электромагнитным возбуждением

Якорь выполняется массивным, с пазами для обмотки. Его витки подключают последовательно друг с другом через коллекторные пластины. В результате образуются соединённые между собой источники ЭДС, работающие сообща. Есть также другие способы подключения.

При отсутствии нагрузки магнитное поле статора располагается симметрично относительно вертикальной оси. Когда в якорной цепи появляется электрический ток, образуется магнитный поток, который преобразует поле статора, поворачивая его в направлении вращения. Это негативно отражается на работе генератора, поскольку вызывает искрение контактной группы. Уменьшить его можно поворотом щёток в направлении вращения. Искажение поля зависит от силы тока и щётки требуется перемещать в разные положения. Кроме того, уменьшается индуктируемая ЭДС.

Ослабить реакцию якоря можно следующими способами:

  • установка дополнительных полюсных пар;
  • закладка обмоток компенсации в главные полюса.

В результате реакция якоря нейтрализуется. Установка обмоток компенсации делает конструкцию генератора сложней.

Если требуется увеличение энергии для генератора, оба способа применяются вместе. По возможности стараются обойтись одними дополнительными полюсами.

Как выглядит генератор с добавочными полюсами

Поскольку при разных нагрузках реакция якоря изменяется, его обмотку подключают к дополнительным полюсам статора последовательно, что уменьшает искажение основного магнитного поля.

Параметры генератора

Индуцируемая ЭДС определяется следующими параметрами:

E = CFω, где

  • F – основной магнитный поток;
  • ω – частота вращения;
  • С – коэффициент, учитывающий особенности устройства.

Напряжение на выходе составляет:

Uг = E — IяRя, где

  • Iя – ток якоря,
  • Rя – сопротивление якорной цепи.

Первый основной параметр генератора – это его мощность:

Pг = IгUг, где

  •  Iг – ток нагрузки.

Важным показателем является способ возбуждения. Он может быть независимым, если обеспечивается дополнительным источником питания.

Способы подключения обмоток возбуждения: а) способ возбуждения, который обеспечивается дополнительным источником питания; б) параллельное самовозбуждение; в) последовательное самовозбуждение; г) смешанное самовозбуждение

Самовозбуждение обмотки создаётся за счёт наличия остаточного магнетизма в сердечнике якоря, индуцирующего в процессе вращения незначительную ЭДС.

Несмотря на то, что магнитный поток в начальный момент мал, он усиливает поток на полюсах, и ток начинает расти, пока не достигнет номинала.

Различают три типа генераторов с самовозбуждением:

  1. Параллельное – ток, вырабатываемый в якорной обмотке большей частью проходит в главную силовую цепь, и только незначительная часть – по обмотке возбуждения.
  2. Последовательное – по обмотке якорных полюсов и по силовой цепи проходит весь вырабатываемый генератором ток.
  3. Смешанное – две обмотки возбуждения подключены параллельно и последовательно.

Генератор переменного тока

Устройство служит для преобразования механической энергии в переменный ток. Большая часть моделей имеют вращающиеся электромагниты (роторы) внутри неподвижных обмоток (статоры).

Принцип действия

За один оборот электромагнита ЭДС два раза меняет своё направление.

На рисунке ниже изображена схема генератора на постоянном магните, вращающегося внутри контура из проволочной рамки. Активно здесь работают только вертикальные части, пересекаемые линиями магнитного поля.

Схема генератора переменного тока

Индуктируемые ЭДС каждой стороны складываются, и её значение определяется из соотношения:

e = 2Blv sin ωt = ωFm sin ωt, где

  • В – индукция магнитного поля, Тл;
  • l – длина вертикальной стороны рамки;
  • v – линейная скорость;
  • t – время;
  • Fm – максимальный магнитный поток.

Индуктируемая ЭДС изменяется по синусоидальному закону, где

  • ωFm – амплитуда ЭДС,
  • ωt – фаза ЭДС.

Для выработки большей энергии применяется электромагнитный ротор, состоящий из стального сердечника, в пазах которого располагается обмотка.

Он является вращающимся электромагнитом, а в обмотке неподвижного статора наводится ЭДС.

Электромагнитное поле создаётся подводом небольшого тока к обмотке ротора. Для этого применяется скользящая контактная группа, подключённая к обмотке. Ток подводится от аккумулятора, другого источника или в результате самовозбуждения.

Потребление энергии со статора является максимальным, и отводить ток удобно с неподвижных обмоток.

Статор собран из листовой трансформаторной стали. Он имеет пазы, куда вкладывается обмотка.

Ротор делается сплошным, но его полюса собираются из листа. Они располагаются с минимальным зазором от статора, чтобы магнитная индукция была максимальной.

Трехфазный генератор

Количество фаз в генераторе может быть от одной до трёх. Однофазные модели применяются при небольшом потреблении энергии. Трехфазные обмотки соединяются в звезду или треугольник. Самой распространённой схемой является «Звезда» с нейтральным проводом.

Схема подключения нагрузки к генератору «Звезда»

Слева изображены обмотки генератора, где стрелками указаны направления ЭДС ЕА, ЕВ, ЕС. Справа находятся нагрузки ZA, ZB, ZC, также соединённые звездой.

Напряжение между фазами и нейтралью обозначены UA, UB, UC, а между двумя фазами – UAB, UBC, UCA.

С генератора токи IA, IB, IC текут на нагрузки и возвращаются через нейтраль назад.

Если не использовать нейтраль, то несимметричная нагрузка может вызвать перекос фаз, что снижает напряжение на одной фазе и увеличивает на другой.

Синхронный и асинхронный генераторы

Синхронный генератор содержит ротор с обмоткой возбуждения, на которую через коллектор подаётся напряжение постоянного тока.

При вращении ротора в статорной обмотке возбуждается однофазное или трёхфазное напряжение. По ней протекает электрический ток, при изменении которого может измениться нагрузка на валу ротора. При этом меняется частота с напряжением. Для поддержания их стабильными предусмотрено регулирование в виде обратной связи через обмотку ротора по напряжению и току.

Устройство генератора: а) синхронный; б) асинхронный

Ротор асинхронного генератора выполнен короткозамкнутым, в виде «беличьей клетки». На него не подаётся напряжение, а электрический ток в обмотке индуцируется за счёт влияния остаточного магнетизма. При этом образуется вращающееся магнитное поле, которое наводит в статорной обмотке напряжение.

В асинхронном генераторе отсутствует возможность управления параметрами через обмотку ротора. Управление производится изменением электрической нагрузки на обмотке статора.

Синхронный генератор обладает способностью поддерживать точные значения напряжения и частоты. У асинхронного генератора эти показатели изменяются в широких пределах. Он больше боится перегрузок в установившемся режиме и имеет склонность к перегреву обмотки статора.

Несмотря на недостатки, он более распространён из-за простоты конструкции, неприхотливости и относительной дешевизны.

Синхронному генератору отдаётся предпочтение при повышенных требованиях электрических приёмников к стабильности частоты и напряжения, а также при наличии реактивных нагрузок и перегрузок в переходных режимах.

Видео про линейный генератор

Про конструкцию, особенности и принцип работы линейного генератора можно узнать из данного видео.

Генератор является важным источником электрической энергии, от которого зависит работа всех электрических приборов. При отсутствии или сбоях в центральном электроснабжении целесообразно приобрести небольшой генератор для частного дома. Главным параметром устройства является мощность, которая не должна быть меньше потребляемой. Генератор требует качественного сервисного обслуживания, ухода и правильной эксплуатации.

Оцените статью:

elquanta.ru

Генератор переменного тока — типы устройств и принцип работы

Любой генератор переменного тока представляет собой устройство электрического типа, предназначенное для преобразования механической энергии в электроэнергию с переменными токовыми величинами.

В большинстве современных генераторов используется традиционный принцип действия вращающегося магнитного поля.

Электрический генератор переменного тока

Выделяется пара основных видов электрических генераторов, имеющих конструкционные отличия, представленные:
  1. Устройствами, имеющими неподвижную часть в виде статора и вращающийся элемент, который представлен магнитными полюсами. Данный тип популярен у потребителей и очень активно эксплуатируется благодаря наличию неподвижной обмоточной части, не требующей снимать избыточную нагрузку электрической сети.
  2. Устройствами электрического типа, имеющими вращающийся якорь и магнитные неподвижные полюса.

Таким образом, в конструкцию генератора любого типа входят две наиболее важные части: подвижная и неподвижная, а также некоторые связующие элементы, представленные щетками и проводными соединениями. Электрогенераторами переменного тока производится как активная энергия, так и реактивная, передающаяся и распределяемая по электросетям.

Электрические генераторы ПТ, наряду с трансформаторами, рассчитаны на определенные номинальные токовые величины и достаточное количество номинального напряжения, зависящие от конструкционных особенностей такой машины, а также типоразмеры рабочих частей и связующих элементов.

Типы генераторов переменного тока

Существует несколько типов машин или установок, предназначенных для преобразования неэлектрического вида энергии в электроэнергию.

Самые популярные виды представлены:

  • компактным преобразователем Стирлинга, имеющим линейный генератор ПТ;
  • однофазным генератором ПТ;
  • двухфазным генератором ПТ;
  • трехфазным генератором ПТ;
  • генератором ПТ на 380 Вольт без наличия двигателя;
  • стандартным генератором ПТ на 220 Вольт;
  • генератором ПТ на тиристоре;
  • синхронным генератором ПТ;
  • индукционным;
  • переносными.

Генератор переменного тока ЭГВ – 32 У1

В зависимости от конструкционных особенностей выделяются устройства, имеющие:

  1. неподвижные магнитные полюса и вращающийся якорь;
  2. вращающиеся магнитные полюса и неподвижный статор.

В зависимости от способа возбуждения:

  • с обмотками возбуждения, питающимися постоянными токовыми величинами с использованием посторонних источников электроэнергии, включая аккумуляторные батареи;
  • с обмотками возбуждения, питающимися с использованием сторонних генераторов ПТ, которые отличаются маломощными токами с одного вала;
  • с обмотками самовозбуждения, питающимися выпрямленными токовыми величинами;
  • с возбуждением, получаемым в процессе функционирования магнитных элементов постоянного типа.

В зависимости от типа соединения фазной обмотки:

  1. не обладающая практическим значением система Тесла;
  2. подсоединение типа «Звезда»;
  3. подсоединение типа «Треугольник»;
  4. подсоединение типа «Славянка».

Последний вариант сочетает в себе шесть обмоточных элементов типа «Звезда» и одну обмотку «Треугольник» на каждом статоре.

С конструктивной точки зрения могут быть выделены преобразующие энергию устройства или машины электрического типа, имеющие явно и неявно выраженные полюса.

Устройство

Конструкция и внутреннее устройство преобразователя одного вида энергии в другой может иметь существенные отличия. Самыми распространенными являются автомобильные генераторы ПТ, представленные следующими основными конструктивными элементами:

  • двухкрышечной корпусной частью со специальными вентиляционными отверстиями;
  • роторной однообмоточной электромагнитной частью, вращаемой посредством шкива в паре подшипников;
  • двумя медными кольцами и графитовыми щетками, подающими ток на роторную часть;
  • регулирующей релейной частью, отвечающей за выдачу генераторного напряжения в оптимальных пределах.

Общая схема устройства генератора переменного тока

Статорная часть имеет три медных обмотки, объединенные «треугольником» с подключением полупроводникового диодного моста, благодаря которому происходит преобразование типа напряжения.

Современные автомобильные генераторы относятся к категории высокооборотных агрегатов, поэтому частота оборотов может составлять девять тысяч в одну минуту.

Схема генератора переменного тока

Принцип действия генераторов ПТ базируется на свойствах электромагнитной индукции, что и отражается в схеме таких агрегатов:

  1. неподвижная якорная часть;
  2. вращающаяся индукторная часть;
  3. кольца контактного типа;
  4. скользящая щеточная часть.

Характерным отличием трехфазных генераторов является электрическая схема, отображающая особое соединение на фазных обмотках.

Синхронный и асинхронный

В зависимости от принципа работы, генератор может быть представлен устройством синхронного и асинхронного типа. Для любых асинхронных генераторов характерна конструктивная простота и дешевизна изготовления, а также достаточно высокая устойчивость к короткому замыканию или перегрузкам.

Асинхронные электрические генераторы прекрасно зарекомендовали себя в работе с активным уровнем нагрузки, включая лампы накаливания, электронагреватели, современную электронику и электрические конфорки.

Разница синхронного и асинхронного генераторов

Тем не менее, даже в условиях кратковременного перегруза отмечается выход устройства из строя. Именно по этой причине подключение приборов с индуктивной нагрузкой, включая электрические двигатели, не электронные сварочные аппараты и энергозависимый инструмент, потребует применения асинхронного генератора с трех- или четырехкратным запасом по уровню мощности.

Генераторы синхронного типа востребованы в работе любого индуктивного потребителя, имеющего высокие параметры пусковых токовых величин. Современные синхронные устройства электрического типа легко выдерживают пятикратный уровень секундной токовой перегрузки, что обусловлено линейной зависимостью числа оборотов вращения магнитного поля от количества роторных оборотов или угловой скорости генератора.

Асинхронные и синхронные генераторы отличаются своим устройством, но первый вариант принято считать конструктивно более надежным, что объясняется отсутствием в них традиционного щеточного узла.

Однофазный

В соответствии с количеством фаз, все генераторы представлены двумя большими группами:

  1. Однофазными.
  2. Трехфазными.

Первый вариант предназначается исключительно для работы с любыми однофазными потребителями электрической энергии, а трехфазные генераторы относятся к категории универсальных, но дорогостоящих машин, нуждающихся в затратном обслуживании.

Однофазный тип генератора

Простейшие конструкции представлены магнитным полем, вращающейся рамкой и обычным коллекторным щеточным узлом, отводящим ток.

Благодаря коллекторному узлу, рамочное вращение через щетки создает постоянство контакта с половинкой рамки в условиях отсутствия циклического изменения положения. Токовые величины, изменяющиеся в соответствии с законами гармоники, передаются на щетки и в схему потребителей энергии.

Трехфазный тип генератора

Однофазные генераторы в настоящее время являются самыми популярными автономными источниками тока и предназначаются для питания любых однофазных потребителей электрической энергии, к которым относятся практически все бытовые приборы.

Принцип работы

Основным принципом функционирования генераторов переменного тока являются вращательные движения токопроводящей рамки, располагаемой между парой постоянных магнитов, имеющих противоположные полюса. В большинстве случаев, конструкция стандартна и функционал таких устройств достаточно прост.

Схема работы трехфазного генератора

Например, роторы, которые установлены в промышленные индукционные генераторы, вращаются благодаря турбине, а статор бывает дополнен достаточно мощным электромагнитом. Внутри роторных обмоточных витков происходит индукция ЭДС, благодаря чему формируется суммарное напряжение, необходимое для потребителей.

Принцип работы генераторов основан на законе электромагнитной индукции Фарадея, согласно которому происходит индукция ЭДС в прямоугольной контурной части проволочной рамки.

Назначение

Генераторы являются основными источниками электроэнергии в системах энергоснабжения, позволяющих обеспечивать питание любых потребителей и заряжать аккумуляторную батарею в процессе функционирования двигателя.

Современные генераторы, имеющие встроенные кремневые диоды, обладают небольшими габаритами, простой конструкцией, надежностью и долгим сроком эксплуатации, что является отличным дополнением высокой удельной мощности таких устройств-преобразователей при малой вращательной частоте.

Некоторое время назад генераторы отличались довольно узкой областью применения, но благодаря усилиям разработчиков, техников и специалистов, преобразователи энергии были в значительной степени усовершенствованы. На сегодняшний день область применения данных устройств очень широка, поэтому генераторы ПТ стали незаменимыми в промышленной и бытовой сфере.

proprovoda.ru

Электрический генератор

Электрический генератор — электрическая машина, предназначенная для преобразования механической энергии в энергию электрического поля. Источниками механической энергии может быть вода, пар, ветер, двигатель внутреннего сгорания и другие.

История

Первыми электрическими генераторами были – электростатические генераторы. Принцип их действия был основан на явлении статического электричества. Но широкого применения в промышленности эти генераторы не получили, так как они развивали высокое напряжение при малом токе. Ярким примером таких генераторов стал генератор Ван де Граафа. Этот генератор был изобретен Робертом Ван де Граафом в 1929 году и в основном служил для ядерных исследований.

Затем люди начали предпринимать попытки по созданию электромагнитных генераторов, то есть генераторов, работа которых основана на явлении электромагнитной индукции. Одним из первых в этом направлении стал гениальный физик Майкл Фарадей, который как раз и открыл явление электромагнитной индукции. Также он сформировал принцип работы генераторов, который был назван законом Фарадея. Его суть заключалась в том, что в проводнике, движущемся перпендикулярно магнитному полю, образовывалась разность потенциалов. Доказательством этого принципа стал диск Фарадея. Это простейший генератор, который представлял из себя медный диск, вращающийся между концами подковообразного магнита.

В 1832 году Ипполит Пикси построил первую динамо-машину. Она представляла из себя машину, в которой имелся статор, создающий постоянное магнитное поле и нескольких обмоток, которые в нем вращались. Ток снимался с помощью механического коммутатора. По сути это был первый генератор постоянного тока.

Потом развитие промышленности пошло вверх, и были изобретены генераторы переменного тока, асинхронные и постоянные двигатели.

Принцип действия

Принцип действия электрического генератора основан на взаимодействии проводника и магнитного поля, в котором он движется. Как всегда приводится классический пример с рамкой в магнитном поле. Когда рамка вращается, её пересекают линии магнитной индукции, при этом в рамке образовывается электродвижущая сила. Эта ЭДС заставляет ток течь по рамке и с помощью контактных колец попадать во внешнюю цепь. Примерно так устроен простейший электрический генератор.

Подробнее пример с рамкой разобран в статье – переменный синусоидальный ток.

Применение

Применение электрических генераторов обширно. Они применяются практически везде, где это только возможно. Снабжают
наши дома электроэнергией, заряжают аккумуляторы в автомобилях, используются в промышленности и многое другое.

В настоящее время стали популярны автономные бензиновые и дизельные электрогенераторы, которые могут служить источниками электрической энергии при её отключении, либо вообще при её отсутствии. Такие генераторы используются в быту и в строительстве, так как форма тока имеет искажения, то без применения специального инвертора, подключать к ним какие-то электронные устройства не целесообразно, так как они могут выйти из строя.

  • Просмотров: 1646
  • electroandi.ru

    Что такое генератор — функции и устройство

    Автор статьи
    13 июня 2014

    Автомобилисты в своих разговорах довольно часто употребляют слово «генератор». Что же оно означает? Попробуем выяснить, что такое генератор.

    Автомобильный генератор – это такой механизм, с помощью которого механическая энергия вращения коленвала преобразовывается в электрический ток.

    Функции генератора

    Генератор используют, чтобы зарядить автомобильный аккумулятор и обеспечить энергией электрическое оборудование: систему зажигания, автомобильную светотехнику, бортовой компьютер, систему диагностики и другие приспособления. Благодаря генератору обеспечивается бесперебойная работа всех механизмов автомобиля.

    Автомобильный генератор представлен генератором переменного тока. Его местоположение – передняя часть двигателя. Генератор запускается в работу коленчатым валом.

    Параметры генератора

    Генератор характеризуется:

    • номинальным напряжением;
    • номинальным током;
    • номинальной частотой вращения;
    • частотой самовозбуждения;
    • коэффициентом полезного действия.

    Номинальное напряжение может составлять 12 или 24 Вольта. Его значение зависит от устройства электрического оборудования автомашины.

    Устройство

    Генератор автомобиля имеет традиционное или компактное устройство. Отличие этих двух видов – в геометрических размерах. К тому же у них по-разному устроены вентилятор, корпус, приводной шкив и выпрямительный узел.

    Но, несмотря на различия, все генераторы имеют сходное строение. Они состоят из таких элементов:

    • корпус;
    • выпрямительный блок;
    • ротор;
    • регулятор напряжения;
    • статор;
    • щеточной узел.

    Функции компонентов генератора

    Ротор образовывает вращающееся магнитное поле, а статор создает переменный электрический ток.

    Корпус является местом, в котором размещаются конструктивные элементы генератора.

    С помощью щеточного узла передается ток возбуждения на контактные кольца.

    Задача выпрямительного блока – преобразовывать синусоидальное напряжение, которое вырабатывает генератор, в постоянный ток.

    Регулятор напряжения не позволяет напряжению выходить из заданных границ. На современных генераторах устанавливаются полупроводниковые электронные (интегральные) регуляторы напряжения.

    Электронные регуляторы выпускаются в:

    • гибридном исполнении;
    • интегральном исполнении.

    Как работает автомобильный генератор?

    Когда водитель вставляет в замок зажигания ключ и поворачивает его, электрический ток, который образовывается в аккумуляторной батарее, с помощью щеточного узла и контактных колец передается на обмотку двигателя. В результате в обмотке наблюдается возникновение магнитного поля. Вращение коленвала вызывает вращение ротора. Магнитное поле, пронизывая обмотку статора, приводит к возникновению переменного напряжения. Когда достигается определенная частота вращения, генератор начинает работать в режиме самовозбуждения.

    С помощью выпрямительного блока переменное напряжение преобразовывается в постоянный ток, который используется для того, чтобы зарядить аккумуляторную батарею и снабдить энергией все механизмы.

    Когда частота вращения коленвала и нагрузка изменяются, то регулятор управления начинает руководить временем включения обмотки. Когда частота вращения возрастает, а нагрузка уменьшается, то обмотка включается реже. Если же частота уменьшается, а нагрузка увеличивается, то обмотка включается чаще.

    Когда генератор не справляется с потребляемым током, то к работе приступает аккумулятор.

    Работоспособность генератора контролируется с помощью контрольной лампы, расположенной на приборной панели.


    «Лайки» в соц. сетях:

    Читайте также:

    tuningui.com

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *