Схема работы генератора – устройство, принцип работы и схемы подключения, виды генераторов, особенности их конструкции и работы

Содержание

Принцип работы и схема подключение генератора

Самая основная функция генераторазарядка батареи аккумулятора и питание электрического оборудования двигателя.

Схема генератора автомобиляПоэтому рассмотрим более подробнее схему генератора, как правильно его подключить, а также дадим несколько советов как проверить его своими руками.

Содержание:

Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.

Принципиальная электрическая схема генератора авто

Интерактивное изображение схемы генератора. Работает при наведении курсора мышки

Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

устройство генератора

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щелкодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Новые автомобили чаще всего оборудованы электронным блоком на регуляторе напряжения, поэтому бортовой компьютер может контролировать величину нагрузки на генераторную установку. В свою очередь на гибридных автомобилях генератор выполняет работу стартер-генератора, аналогичная схема используется и в других конструкциях системы стоп-старт.

Принцип работы генератора авто

принцип работы генератора

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигание идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Наиболее опасным для генератора является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

схема генератора

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Схема подключения генератора на ВАЗ 2107

Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.

Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.

Обозначения генераторных установок:

  1. “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
  2. “Масса”: “-”, D-, 31, B-, M, E, GRD.
  3. Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
  4. Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
  5. Вывод фазы: ~, W, R, STА.
  6. Вывод нулевой точки обмотки статора: 0, МР.
  7. Вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S.
  8. Вывод регулятора напряжения для питания его от выключателя зажигания: IG.
  9. Вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.
схема зарядки аккумуляторной батареи ВАЗ-2107 с генератором типа 37.3701

Схема генератора ВАЗ-2107 тип 37.3701

  1. Аккумуляторная батарея.
  2. Генератор.
  3. Регулятор напряжения.
  4. Монтажный блок.
  5. Выключатель зажигания.
  6. Вольтметр.
  7. Контрольная лампа заряда аккумуляторной батареи.

При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.

Схема зарядки ВАЗ с инжекторными двигателями

Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, тоесть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.

Проверка работы генератора

Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить ток отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.

Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.

Элементарная проверка лампочкой и мультиметорм

Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.

“Массу” нужно подключать в последнюю очень, чтобы не закоротить аккумулятор.

Включаем тестер в режим (DC) постоянного тока, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем гологенную лампу h5 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.

схема проверки генератора

Схема проверки генератора

Строго не рекомендуется:

  1. Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
  2. Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
  3. Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
  4. Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.

Спрашивайте в комментариях. Ответим обязательно!

etlib.ru

Принцип работы автомобильного генератора, схема

Если вы найдете ошибку в тексте, выделите её мышью и нажмите Ctrl+Enter. Спасибо.

Генератор — один из главных элементов электрооборудования автомобиля, обеспечивающий одновременное питание потребителей и подзаряд аккумуляторной батареи.

Принцип действия устройства построен на превращении механической энергии, которая поступает от мотора, в напряжение.

В комплексе с регулятором напряжения узел называется генераторной установкой.

В современных автомобилях предусмотрен агрегат переменного тока, в полной мере удовлетворяющий всем заявленным требованиям.

Устройство генератора

Элементы источника переменного тока спрятаны в одном корпусе, который также является основой для статорной обмотки.

В процессе изготовления кожуха применяются легкие сплавы (чаще всего алюминия и дюрали), а для охлаждения предусмотрены отверстия, обеспечивающие своевременный отвод тепла от обмотки.

В передней и задней части кожуха предусмотрены подшипники, к которым и крепится ротор — главный элемент источника питания.

В кожухе помещаются почти все элементы устройства. При этом сам корпус состоит из двух крышек, расположенных с левой и с правой стороны — около приводного вала и контрольных колец соответственно.

Две крышки объединяются между собой с помощью специальных болтов, изготовленных из алюминиевого сплава. Этот металл отличается незначительной массой и способностью рассеивать тепло.

Не менее важную роль играет щеточный узел, передающий напряжение на контактные кольца и обеспечивающий работу узла.

Изделие состоит из пары графитных щеток, двух пружин и щеткодержателя.

Также уделим внимание элементам, расположенным внутри кожуха:

  • Ротор — элемент, имеющий одну обмотку и, по сути, представляющий собой электромагнит. Ротор находится на валу, а сверху обмотки установлен сердечник диаметром на 1,5-2,0 мм больше диаметра стартера. Ток подается с помощью медных колец, которые расположены на валу и объединены с обмоткой через специальные щетки.
  • Обмотка — устройство, изготовленное из медной проволоки и закрепленное в пазы сердечника. Сам сердечник выполнен в форме окружности и изготавливается с применением специального материала, обладающего улучшенными магнитными качествами. В электротехнике металл носит название «трансформаторное железо». У статора есть три обмотки, связанные между собой и объединенные в звезду или треугольник. В точке объединения установлен диодный мост, обеспечивающий выпрямление напряжения. Обмотка изготовлена из специальной проволоки, имеющей двойную термоустойчивую изоляцию, покрытую специальным лаком.
  • Реле-регулятор — ключевой элемент установки, обеспечивающий стабильное напряжение на выходе устройства. Монтаж регулятора может производиться в кожухе генератора или снаружи. В первом случае он находится возле графитных щеток, а во втором — там, где щетки крепятся к щеткодержателю (но в разных моделях авто монтаж может осуществляться по-разному). Ниже представлены реле-регуляторы с щеточным узлом.
  • Выпрямительный мост — элемент, предназначенный для преобразования переменного тока на выходе статора в постоянное напряжение. Выпрямитель состоит из трех пар диодов, которые установлены на токопроводящем основании и попарно объединяются друг с дружкой. В среде автовладельцев и мастеров СТО диодный мост часто называется «подковой» из-за схожести с этим предметом.

Какие требования предъявляются к автомобильному генератору?

К генераторной установке автомобиля выдвигается ряд требований:

  • Напряжение на выходе устройства и, соответственно, в бортовой сети должно поддерживаться в определенном диапазоне, вне зависимости от нагрузки или частоты вращения коленвала.
  • Выходные параметры должны иметь такие показатели, чтобы в любом из режимов работы машины АКБ получала достаточное напряжение заряда.

При этом каждый автовладелец должен особое внимание уделять уровню и стабильности напряжения на выходе. Это требование вызвано тем, что аккумулятор чувствителен к подобным изменениям.

Например, в случае снижения напряжения ниже нормы АКБ не заряжается до необходимого уровня. В итоге возможны проблемы в процессе пуска мотора.

В обратной ситуации, когда установка выдает повышенное напряжение, аккумулятор перезаряжается и быстрее ломается.

Полезно почитать: Взорвался аккумулятор, причины и что делать.

Принцип работы автомобильного генератора, особенности схемы

Принцип действия генераторного узла построен на эффекте электромагнитной индукции.

В случае прохождения магнитного потока через катушку и его изменения, на выводах появляется и меняется напряжение (в зависимости от скорости изменения потока). Аналогичным образом работает и обратный процесс.

Так, для получения магнитного потока требуется подать на катушку напряжение.

Выходит, что для создания переменного напряжения требуются две составляющие:

  • Катушка (именно с нее снимается напряжение).
  • Источник магнитного поля.

Не менее важным элементом, как отмечалось выше, является ротор, выступающий в роли источника магнитного поля.

У полюсной системы узла присутствует остаточный магнитный поток (даже при отсутствии тока в обмотке).

Этот параметр небольшой, поэтому способен вызвать самовозбуждение только на повышенных оборотах. По этой причине по обмотке ротора пропускают сначала небольшой ток, обеспечивающий намагничивание устройства.

Упомянутая выше цепочка подразумевает прохождение тока от АКБ через лампочку контроля.

Главный параметр здесь — сила тока, которая быть в пределах нормы. Если ток будет завышенным, аккумулятор быстро разрядится, а если заниженным — возрастет риск возбуждения генератора на ХХ мотора (холостых оборотах).

С учетом этих параметров подбирается и мощность лампочки, которая должна составлять 2-3 Вт.

Как только напряжение достигает требуемого параметра, лампочка гаснет, а обмотки возбуждения питаются от самого автомобильного генератора. При этом источник питания переходит в режим самовозбуждения.

Снятие напряжения производится со статорной обмотки, которая выполнена в трехфазном исполнении.

Узел состоит 3-х индивидуальных (фазных) обмоток, намотанных по определенному принципу на магнитопроводе.

Токи и напряжения в обмотках смещены между собой на 120 градусов. При этом сами обмотки могут собираться в двух вариантах — «звездой» или «треугольником».

Если выбрана схема «треугольник», фазные токи в 3-х отмотках будут в 1,73 раза меньше, чем общий ток, отдаваемый генераторной установкой.

Вот почему в автомобильных генераторах большой мощности чаще всего применяется схема «треугольника».

Это как раз объясняется меньшими токами, благодаря которым удается намотать обмотку проводом меньшего сечения.

Такой же провод можно использовать и в соединениях типа «звезда».

Чтобы созданный магнитный поток шел по назначению, и направлялся к статорной обмотке, катушки находятся в специальных пазах магнитопровода.

Из-за появления магнитного поля в обмотках и в статорном магнитопроводе, появляются вихревые токи.

Действие последних приводит к нагреву статора и снижению мощности генератора. Для уменьшения этого эффекта при изготовлении магнитопровода применяются стальные пластины.

Выработанное напряжение поступает в бортовую сеть через группу диодов (выпрямительный мост), о котором упоминалось выше.

После открытия диоды не создают сопротивления, и дают току беспрепятственно проходить в бортовую сеть.

Но при обратном напряжении I не пропускается. Фактически, остается только положительная полуволна.

Некоторые производители автомобилей для защиты электроники меняют диоды на стабилитроны.

Главной особенностью деталей является способность не пропускать ток до определенного параметра напряжения (25-30 Вольт).

После прохождения этого предела стабилитрон «пробивается» и пропускает обратный ток. При этом напряжение на «плюсовом» проводе генератора остается неизменным, что не несет риски для устройства.

К слову, способность стабилитрона поддерживать на выводах постоянное U даже после «пробоя» применяется в регуляторах.

В результате после прохождения диодного моста (стабилитронов) напряжение выпрямляется, становится постоянным.

У многих типов генераторных установок обмотка возбуждения имеет свой выпрямитель, собранный из 3-х диодов.

Благодаря такому подключению, протекание тока разряда от АКБ исключено.

Диоды, относящиеся к обмотке возбуждения, работают по аналогичному принципу и питают обмотку постоянным напряжением.

Здесь выпрямительное устройство состоит из шести диодов, три их которых являются отрицательными.

В процессе работы генератора ток возбуждения ниже параметра, который отдает автомобильный генератор.

Следовательно, для выпрямления тока на обмотке возбуждения достаточно диодов с номинальным током до двух Ампер.

Для сравнения силовые выпрямители имеют номинальный ток до 20-25 Ампер. Если требуется увеличить мощность генератора, ставится еще одно плечо с диодами.

Режимы работы

Чтобы разобраться в особенностях функционирования автомобильного генератора, важно понять особенности каждого из режимов:

  • В процессе пуска двигателя главным потребителем электрической энергии выступает стартер. Особенностью режима является создание повышенной нагрузки, что приводит к уменьшению напряжения на выходе АКБ. Как следствие, потребители берут ток только с аккумулятора. Вот почему при таком режиме батарея разряжается с наибольшей активностью.
  • После завода двигателя автомобильный генератор переходит в режим источника питания. С этого момента устройство дает ток, который необходим для питания нагрузки в автомобиле и подзаряда АКБ. Как только аккумулятор набирает требуемую емкость, уровень зарядного тока снижается. При этом генератор продолжает играть роль главного источника питания.
  • После подключения мощной нагрузки, например, кондиционера, обогрева салона и прочих, скорость вращения ротора замедляется. В этом случае автомобильный генератор уже не способен покрыть потребности автомобиля в токе. Часть нагрузки перекладывается на АКБ, который работает в параллель с источником питания и начинает постепенно разряжаться.

Регулятор напряжения — функции, типы, контрольная лампа

Ключевым элементом генераторной установки является регулятор напряжения — устройство, поддерживающее безопасный уровень U на выходе статора.

Такие изделия бывают двух типов:

  • Гибридные — регуляторы, электрическая схема которых включает в себя как электронные приборы, так и радиодетали.
  • Интегральные — устройства, в основе которых лежит тонкопленочная микроэлектронная технология. В современных автомобилях наибольшее распространение получил именно этот вариант.

Не менее важный элемент — контрольная лампа, смонтированная на приборной панели, по которой можно делать вывод о наличии проблем с регулятором.

Зажигание лампочки в момент пуска мотора должно быть кратковременным. Если же она горит постоянно (когда генераторная установка в работе), это свидетельствует о поломке регулятора или самого узла, а также необходимости ремонта.

Тонкости крепления

Фиксация генераторной установки производится при помощи специального кронштейна и болтового соединения.

Сам узел крепится в передней части двигателя, благодаря специальным лапам и проушинам.

Если на автомобильном генераторе предусмотрены специальные лапы, последние находятся на крышках мотора.

В случае применения только одной фиксирующей лапы, последняя ставится только на передней крышке.

В лапе, установленной в задней части, как правило, предусмотрено отверстие с установленной в нем дистанционной втулкой.

Задача последней заключается в устранении зазора, созданного между упором и креплением.

Крепление генератора Audi A8.

А так агрегат крепиться на ВАЗ 21124.

Неисправности генератора и способы их устранения

Электрооборудование автомобиля имеет свойство ломаться. При этом наибольшие проблемы возникают с АКБ и генератором.

В случае выхода из строя любого из этих элементов эксплуатация ТС в нормальном режиме работы становится невозможной или же авто оказывается вовсе обездвиженным.

Все поломки генератора условно делятся на две категории:

  • Механические. В этом случае проблемы возникают целостностью корпуса, пружин, ременным приводом и прочими элементами, которые не связаны с электрической составляющей.
  • Электрические. Сюда относятся неисправности диодного моста, износ щеток, замыкание в обмотках, поломки реле регулятора и прочие.

Теперь рассмотрим список неисправностей и симптомы более подробно.

1. На выходе недостаточный уровень зарядного тока:

  • Пробуксовка приводного ремня. Решение — натянуть ремень и проверить подшипники на факт исправности, симптомы – свист ремня генератора.
  • Зависание щеток. Для начала стоит вычистить щеткодержатель и щетки от загрязнений и убедиться в достаточности усилия.
  • Обрыв цепочки возбуждения, подгорание контактных колес. Первая проблема решается путем поиска и устранения обрыва, а вторая — посредством зачистки и проточки контактных колец (если это требуется).
  • Выход из строя регулятора напряжения.
  • Задевание ротором статорного полюса.
  • Обрыв цепочки, объединяющий генератор и АКБ.

2. Вторая ситуация.

Когда автомобильный генератор выдает необходимый уровень тока, но АКБ все равно не заряжается.

Причины могут быть разными:

  • Низкое качество протяжки контакта «массы» между регулятором и основным узлом. В этом случае проверьте качество контактного соединения.
  • Выход из строя реле напряжения — проверьте и поменяйте его.
  • Износились или зависли щетки — замените или очистите от грязи.
  • Сработало защитное реле регулятора из-за наличия замыкания на «массу». Решение — отыскать место повреждения и убрать проблему.
  • Прочие причины — замасливание контактов, поломка регулятора напряжения, витковое замыкание в обмотках статора, плохое натяжение ремня.

3. Генератор работает, но издает повышенный шум.

Вероятные неисправности:

  • Замыкание между витками статора.
  • Износ места для посадки подшипника.
  • Послабление шкивной гайки.
  • Разрушение подшипника.

Ремонт генератора автомобиля всегда должен начинаться с точной диагностики проблемы, после чего причина устраняется путем профилактических мер или замены вышедшего из строя узла.

Рекомендации по замене

Практика эксплуатации показывает, что поменять автомобильный генератор несложно, но для решения задачи требуется соблюдать ряд правил:

  • Новое устройство должно иметь аналогичные токоскоростные параметры, как и у заводского узла.
  • Энергетические показатели должны быть идентичными.
  • Передаточные числа у старого и нового источника питания должны совпадать.
  • Устанавливаемый узел должен подходить по размерам и с легкостью крепится к мотору.
  • Схемы нового и старого автомобильного генератора должны быть одинаковыми.

Учтите, что устройства, смонтированные на автомобилях зарубежного производства, фиксируются не так, как отечественного, к примеру, как на генератор TOYOTA COROLLA и Лада Гранта .

Следовательно, если менять иностранный агрегат изделием отечественного производства, придется установить новое крепление.

Полезные советы в помощь

В завершение рассказа об автомобильных генераторах стоит выделить ряд советов, что необходимо, а чего нельзя делать автовладельцам в процессе эксплуатации.

Главный момент — установка, в процессе которой важно с предельным вниманием подойти к подключению полярности.

Если ошибиться в этом вопросе, выпрямительное устройство поломается и возрастает риск возгорания.

Аналогичную опасность несет и пуск двигателя при некорректно подключенных проводах.

Чтобы избежать проблем в процессе эксплуатации, стоит придерживаться ряда правил:

  • Следите за чистотой контактов и контролируйте исправность электрической проводки автомобиля. Отдельное внимание уделите надежности соединения. В случае применения плохих контактных проводов уровень бортового напряжения выйдет за допустимый предел.
  • Следите за натяжкой генератора. В случае слабого натяжения источник питания не сможет выполнять поставленные задачи. Если же перетянуть ремень, это чревато быстрым износом подшипников.
  • Отбрасывайте провода от генератора и АКБ при выполнении электросварочных работ.
  • Если контрольная лампочка загорается и продолжает гореть после пуска мотора, выясните и устраните причину.

Отдельное внимание стоит уделить реле-регулятору, а также проверке напряжения на выходе источника питания. В режиме заряда этот параметр должен быть на уровне 13,9-14,5 Вольт.

Кроме того, время от времени проверяйте износ и достаточность усилия щеток генератора, состояние подшипников и контактных колец.

Высота щеток должна измеряться при демонтированном держателе. Если последний износился до 8-10 мм, требуется замена.

Что касается усилия пружин, удерживающих щетки, оно должно быть на уровне 4,2 Н (для ВАЗ). При этом осматривайте контактные кольца — на них не должно быть следов масла.

Также автовладелец должен запомнить и ряд запретов, а именно:

  • Не оставляйте машину с подключенной АКБ, если имеются подозрения поломки диодного моста. В противном случае аккумулятор быстро разрядится, и возрастает риск воспламенения проводки.
  • Не проверяйте правильность работы генератора путем перемыкания его выводов или отключения АКБ при работающем двигателе. В этом случае возможна поломка электронных элементов, бортового компьютера или регулятора напряжения.
  • Не допускайте попадания технических жидкостей на генератор.
  • Не оставляйте включенным узел в случае, если клеммы АКБ были сняты. В противном случае это может привести к поломке регулятора напряжения и электрооборудования авто.
  • Своевременно проводите замену ремня генератора.

Зная особенности работы генератора, нюансы его конструкции, основные неисправности и тонкости ремонта, можно избежать многих проблем с проводкой и АКБ.

Помните, что генератор — сложный узел, требующий особого подхода к эксплуатации.

Важно постоянно следить за ним, своевременно проводить профилактические мероприятия и замену деталей (при наличии такой необходимости).

При таком подходе источник питания и сам автомобиль прослужат очень долго.

Если в статье есть видео и оно не проигрывается, выделите любое слово мышью, нажмите Ctrl+Enter, в появившееся окно введите любое слово и нажмите «ОТПРАВИТЬ». Спасибо.

ПОДЕЛИТЬСЯ НОВОСТЬЮ С ДРУЗЬЯМИ:

autotopik.ru

Принцип работы генератора. Принцип работы генератора постоянного тока :: SYL.ru

Генератор – это устройство, которое производит продукт, вырабатывает электроэнергию либо создает электромагнитные, электрические, звуковые, световые колебания и импульсы. В зависимости от функций их можно разделить на виды, которые мы рассмотрим далее.

Генератор постоянного тока

Для того чтобы понять принцип работы генератора постоянного тока, нужно выяснить его основные характеристики, а именно зависимости главных величин, которые и определяют работу устройства в применяемой схеме возбуждения.

Основной величиной является напряжение, на которое влияет скорость вращения генератора, токовозбуждения и нагрузки.

Основной принцип работы генератора постоянного тока зависит от воздействия раздела энергии на магнитный поток основного полюса и, соответственно, от получаемого с коллектора напряжения при неизменном положении щеток на нем. У аппаратов, которые оснащены добавочными полюсами, элементы располагаются таким образом, чтобы токораздел полностью совпадал с геометрической нейтральностью. Благодаря этому, он будет смещаться по линии вращения якоря в положение оптимальной коммутации с последующим закреплением щеткодержателей в таком положении.

Генератор переменного тока

Принцип работы генератора переменного тока основан на превращении механической в электроэнергию благодаря вращению проволочной катушки в созданном магнитном поле. Это приспособление состоит из неподвижного магнита и проволочной рамки. Каждый из ее концов соединяется между собой при помощи контактного кольца, которое скользит по электропроводной угольной щетке. За счет такой схемы электрический индуцированный ток начинает переходить к внутреннему контактному кольцу в тот момент, когда половина рамки, соединяющаяся с ним, проходит мимо северного полюса магнита и, наоборот, к внешнему кольцу в тот момент, когда другая часть проходит мимо северного полюса.

Самый экономичный способ, на котором основывается принцип работы генератора переменного тока, является сильная выработка. Это явление получается за счет использования одного магнита, который вращается относительно нескольких обмоток. Если его вставить в проволочную катушку, он начнет индуцировать электрический ток, таким образом будет заставлять стрелку гальванометра отклонятся в сторону от положения «0». После того как магнит будет вынут из кольца, ток поменяет свое направление, а стрелка прибора начнет отклоняться в другую сторону.

Автомобильный генератор

Чаще всего его можно отыскать на передней части двигателя, основная часть работы заключается во вращении коленчатого вала. Новые машины могут похвастаться гибридным типом, который также выполняет и роль стартера.

Принцип работы автомобильного генератора заключается во включении зажигания, при котором ток движется по контактным кольцам и направляется к щелочному узлу, а после переходит на перемотку возбуждения. В результате такого действия будет образовано магнитное поле.

Совместно с коленчатым валом начинает свою работу ротор, который и создает волны, пронизывающие обмотку статора. Переменный ток начинает появляться на выходе перемотки. При работе генератора в режиме самовозбуждения частота вращения увеличивается до определенного значения, затем в выпрямительном блоке начинает меняться переменное напряжение на постоянное. В конечном итоге устройство будет обеспечивать потребителей необходимым электричеством, а аккумулятор – током.

Принцип работы автомобильного генератора состоит в изменении скорости коленчатого вала либо смены нагрузки, при которой включается регулятор напряжения, он управляет временем при включении перемотки возбуждения. В момент уменьшения внешних нагрузок либо увеличения вращения ротора период включения обмотки возбуждения значительно сокращается. В тот момент, когда ток увеличивается настолько, что генератор прекращает справляться, приступает к работе АКБ.

У современных автомобилей на панели приборов находится контрольная лампочка, которая и оповещает водителя про возможные отклонения в генераторе.

Электрический генератор

Принцип работы электрического генератора заключается в переработке энергии механической на электрическое поле. Основными источниками такой силы могут быть вода, пар, ветер, двигатель внутреннего сгорания. Принцип работы генератора основывается на совместном взаимодействии магнитного поля и проводника, а именно в момент вращения рамки ее начинают пересекать линии магнитной индукции, и в это время появляется электродвижущая сила. Она заставляет ток протекать по рамке при помощи контактных колец и вливаться во внешнюю цепь.

Инвентарные генераторы

На сегодняшний день становится очень популярным инверторный генератор, принцип работы которого заключается в создании автономного источника питания, производящего высококачественную электроэнергию. Такие приборы применяют как временные, а также постоянные источники питания. Чаще всего они используются в больницах, школах и иных учреждениях, где не должны присутствовать даже малейшие скачки напряжения. Всего этого можно добиться, используя инверторный генератор, принцип работы которого основан на постоянстве и проходит по такой схеме:

  1. Выработка высокочастотного переменного тока.
  2. Благодаря выпрямителю преобразуется полученный ток в постоянный.
  3. Затем образуется накопление тока в аккумуляторах и стабилизируется колебания электроволн.
  4. При помощи инвертора постоянная энергия меняется на переменный ток нужного напряжения и частоты, а затем поступает к пользователю.

Дизельный генератор

Принцип работы дизель-генератора заключается в преобразовании энергии топлива в электроэнергию, основные действия которого заключаются в следующем:

  • при попадании в дизель топлива оно начинает сгорать, после чего трансформируется из химической в тепловую энергию;
  • благодаря наличию кривошипно-шатунного механизма тепловая сила преобразуется в механическую, это все происходит в коленчатом вале;
  • полученная энергия при помощи ротора превращается в электрическую, которая и необходима на выходе.

Синхронный генератор

Принцип работы синхронного генератора основан на одинаковой чистоте вращения магнитного поля статора и ротора, который и создает вместе с полюсами магнитное поле, и оно пересекает обмотку статора. В этом агрегате ротор — постоянный электромагнит, число полюсов которого может начинаться от 2-х и выше, но кратным они должны быть 2-м.

При запуске генератора ротор создает слабое поле, но после увеличения оборотов начинает появляться большая сила в обмотке возбуждения. Получаемое напряжение через автоматический блок регулировки поступает на устройство и контролирует выходное напряжение за счет изменений в магнитном поле. Основной принцип работы генератора заключается в высокой стабильности исходящего напряжения, а недостатком является существенная возможность перегрузок по току. Еще к негативным качествам можно добавить присутствие щеточного узла, который все равно в определенное время придется обслуживать, а это само собой влечет дополнительные финансовые затраты.

Асинхронный генератор

Принцип работы генератора заключается в постоянном нахождении в режиме торможения с ротором, который вращается с опережением, но все-таки в той же ориентации, что и магнитное поле у статора.

В зависимости от используемого типа обмотки ротор может быть фазным или короткозамкнутым. Созданное при помощи вспомогательной обмотки вращающееся магнитное поле начинает индуцировать его на роторе, которое и вращается вместе с ним. Частота и напряжение на выходе напрямую зависит от количества оборотов, так как магнитное поле не регулируется и остается неизменным.

Электрохимический генератор

Также существует электрохимический генератор, устройство и принцип работы которого заключаются в выработке из водорода электрической энергии в автомобиле для его движения и питания всех электроприборов. Этот аппарат является химическим источником тока, так как он производит энергию за счет прохождения реакции кислорода и водорода, который для выработки топлива используется в газообразном состоянии.

Генератор акустических помех

Принцип работы генератора акустических помех заключается в защите организаций и физических лиц от прослушивания переговоров и различного рода мероприятий. За ними можно проследить через оконные стекла, стены, системы вентиляции, отопительные трубы, радиомикрофоны, проводные микрофоны и устройства лазерного съема полученной акустической информации с окон.

Поэтому фирмы очень часто для защиты своей конфиденциальной информации используют генератор, устройство и принцип работы которого заключается в настройке аппарата на заданную частоту, если она известна, либо на определенный диапазон. Затем создается универсальная помеха в виде шумового сигнала. Для этого в самом аппарате находится генератор шума нужной мощности.

Также существуют и генераторы, которые находятся в шумовом диапазоне, благодаря которым можно замаскировать полезный звуковой сигнал. В этот комплект входит блок, который и формирует шум, а также его усиления и акустические излучатели. Основным недостатком использования таких устройств являются помехи, которые появляются при проведении переговоров. Для того чтобы аппарат справлялся полностью со своей работой, переговоры стоит проводить всего лишь в течение 15 минут.

Регулятор напряжения

Основной принцип работы регулятора напряжения основывается на поддерживании энергии бортовой сети во всех режимах работы при разнообразном изменении частоты поворотов ротора генератора, температуры внешней среды и электрической нагрузки. Этот прибор также может выполнять и второстепенные функции, а именно защищать части генераторной установки от возможного аварийного режима установки и перегрузки, автоматически подключать в бортовую систему цепь обмотки возбуждения либо сигнализацию аварийной работы устройства.

Все такие приборы работают по одному принципу. Напряжение в генераторе определяется несколькими факторами – силой тока, частотой вращения ротора и величиной магнитного потока. Чем меньше нагрузка на генератор и выше частота вращения, тем будет больше напряжение устройства. Благодаря большему току в обмотке возбуждения начинает увеличиваться магнитный поток, а с ним и напряжение в генераторе, а после того, как уменьшается ток, становится меньшим и напряжение.

Независимо от производителя таких генераторов, все они нормализуют напряжение изменением тока возбуждения одинаково. При возрастании либо уменьшении напряжения начинает увеличиваться либо уменьшаться ток возбуждения и проводить напряжение в необходимые пределы.

В повседневной жизни использование генераторов очень помогает человеку в решении множества возникающих вопросов.

www.syl.ru

Генератор переменного тока: устройство, принцип работы, назначение

Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угодно, и даже большие разрушения при неумелом использовании.

Но было время, когда электрические эффекты все так же присутствовали в природе, но никак не помогали человеку. Что же изменилось с тех пор? Люди стали изучать физические явления и придумали интересные машины – преобразователи, которые, в общем, и сделали революционный скачок нашей цивилизации, позволив человеку получать одну энергию из другой.

Так люди научились вырабатывать электричество из обычного металла, магнитов и механического движения – только и всего. Были построены генераторы, способные выдавать колоссальные по мощности потоки энергии, исчисляемые мегаваттами. Но интересно, что принцип действия этих машин не так уж сложен и вполне может быть понятен даже подростку. Что же такое генератор электрического тока? Попробуем разобраться в этом вопросе.

Эффект электромагнитной индукции

Основой появления в проводнике электрического тока является электродвижущая сила — ЭДС. Она способна заставить перемещаться заряженные частицы, которых много в любом металле. Эта сила появляется только в случае, если проводник испытывает на себе изменение интенсивности магнитного поля. Сам эффект получил название электромагнитной индукции. ЭДС тем больше, чем больше скорость изменения потока магнитных волн. То есть, можно возле постоянного магнита перемещать проводник, или на неподвижный провод влиять полем электромагнита, меняя его силу, эффект будет один и тот же – в проводнике появится электрический ток.

Над этим вопросом в первой половине XIX века работали ученые Эрстед и Фарадей. Они же и открыли это физическое явление. В последствии на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины легко могут быть преобразованы друг в друга.

Как работают генераторы постоянного и переменного тока

Понятно, что генератор электрического тока – это электромеханическая машина, вырабатывающая ток. Но на самом деле она есть преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, которая уже вызывает ток в проводнике. Устройство любого генератора принципиально ничем не отличается от замкнутого проводящего контура, который вращается между полюсами магнита, как в первых опытах ученых. Только намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами. Замкнутый контур имеет вид многовитковой обмотки, которых в современном генераторе не одна, а минимум три. Все это сделано для того, чтобы получить как можно большую ЭДС.

Стандартный электрический генератор переменного тока (или постоянного) состоит из:

  • Корпуса. Выполняет функцию рамы, внутри которой крепят статор с полюсами электромагнита. В нем установлены подшипники качения роторного вала. Его изготавливают из металла, он также защищает всю внутреннюю начинку машины.
  • Статора с магнитными полюсами. На нем закреплена обмотка возбуждения магнитного потока. Его выполняют из ферромагнитной стали.
  • Ротора или якоря. Это подвижная часть генератора, вал которой приводит во вращательное движение посторонняя сила. На сердечнике якоря располагают обмотку самовозбуждения, где и образуется электрический ток.
  • Узла коммутации. Этот элемент конструкции служит для отведения электричества с подвижного вала ротора. Он включает в себя проводящие кольца, которые подвижно соединены с графитовыми токосъемными контактами.

Создание постоянного тока

В генераторе, продуцирующем постоянный ток, проводящий контур вращается в пространстве магнитной насыщенности. Причем за определенный момент вращения каждая половина контура оказывается вблизи того или иного полюсника. Заряд в проводнике за этот полуоборот движется в одном направлении.

Чтобы получить съем частиц, сделан механизм отвода энергии. Его особенность в том, что каждая половина обмотки (рамки) соединена с токопроводящим полукольцом. Полукольца между собой не замкнуты, а закреплены на диэлектрическом материале. За период, когда одна часть обмотки начинает проходить определенный полюс, полукольцо замыкается в электрическую схему щеточными контактными группами. Получается, на каждую клемму приходит только одного вида потенциал.

Правильнее назвать энергию не постоянной, а пульсирующей, с неизменной полярностью. Пульсация вызвана тем, что магнитный поток на проводник при вращении оказывает как максимальное, так и минимальное влияние. Чтобы эту пульсацию выровнять, применяют несколько обмоток на роторе и мощные конденсаторы на входе схемы. Для уменьшения потерь магнитного потока зазор между якорем и статором делают минимальным.

Схема генератора переменного тока

Когда происходит вращение подвижной части генерирующего ток устройства, в проводниках рамки также наводится ЭДС, как и в генераторе постоянного тока. Но небольшая особенность – генератор переменного тока устройство коллекторного узла имеет другое. В нем каждый вывод соединен со своим токопроводящим кольцом.

Принцип работы генератора переменного тока следующий: когда половина обмотки проходит возле одного полюса (другая, соответственно, возле противоположного полюса), в цепи движется ток в одном направлении от минимума к наивысшему своему значению и снова к нулю. Как только обмотки меняют свое положение относительно полюсов, ток начинает свое движение в обратном направлении с той же закономерностью.

При этом на входе схемы получается форма сигнала в виде синусоиды с частотой полуволн, соответствующей периоду вращения вала ротора. Для того, чтобы получить на выходе стабильный сигнал, где частота генератора переменного тока постоянна, период вращения механической части должен быть неизменным.

Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.

Генераторы МГД имеют более простое конструктивное решение – в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.

Генератор синхронный переменного тока

Существуют такие типы генераторов переменного тока:

  • Машины синхронные.
  • Машины асинхронные.

Синхронный генератор переменного тока имеет строгую физическую зависимость между вращательным движением ротора и генерируемой частотой электричества. В таких системах ротор – это электромагнит, собранный из сердечников, полюсов и возбуждающих обмоток. Последние запитываются от источника постоянного тока посредством щеток и кольцевых контактов. Статор же представляет собой катушки провода, соединенные между собой по принципу звезды с общей точкой – нолем. В них уже наводится ЭДС и вырабатывается ток.

Вал ротора приводится в движение посторонней силой, обычно турбинами, частота движения которых синхронизирована и постоянна. Электрическая цепь, подключаемая к такому генератору, представляет собой трехфазную схему, частота тока в отдельной линии которой смещена на фазу в 120 градусов относительно других линий. Чтобы получить правильную синусоиду, направление магнитного потока в просвете между статорной и роторной частью регулируют конструкцией последних.

Возбуждение генератора переменного тока реализуют двумя методами:

  1. Контактным.
  2. Бесконтактным.

В схеме контактного возбуждения на обмотки электромагнита через щеточную пару подают электроэнергию с другого генератора. Этот генератор может быть совмещен с валом основного. Он, как правило, имеет меньшую мощность, но достаточную, чтобы создать сильное магнитное поле.

Бесконтактный принцип предусматривает, что синхронный генератор переменного тока на валу имеет дополнительные трехфазные обмотки, в которых при вращении наводится ЭДС и вырабатывается электричество. Оно через выпрямляющую схему поступает на катушки возбуждения ротора. Конструктивно в такой системе отсутствуют подвижные контакты, что упрощает систему, делая ее более надежной.

Асинхронный генератор

Существует асинхронный генератор переменного тока. Устройство его отличается от синхронного. В нем нет точной зависимости ЭДС от частоты с которой вал ротора вращается. Присутствует такое понятие как «скольжение S», которое характеризует эту разницу влияния. Величина скольжения определяется вычислением, так что неправильно думать, будто бы нет закономерности электромеханического процесса в асинхронном двигателе.

Если генератор, работающий вхолостую, нагрузить, то протекающий в обмотках ток будет создавать магнитный поток, препятствующий вращению ротора с заданной частотой. Так образуется скольжение, что, естественно, влияет на выработку ЭДС.

Современный асинхронный генератор переменного тока устройство подвижной части имеет в трех разных исполнениях:

  1. Полый ротор.
  2. Короткозамкнутый ротор.
  3. Фазный ротор.

Такие машины могут иметь само- и независимое возбуждение. Первая схема реализуется за счет включения в обмотку конденсаторов и полупроводниковых преобразователей. Возбуждение независимого типа создается дополнительным источником переменного тока.

Схемы включения генераторов

Все мощные источники питания линий электропередач вырабатывают трехфазный электрический ток. Они содержат в себе три обмотки, в которых образуются переменные токи со смещенной друг от друга фазой на 1/3 периода. Если рассматривать каждую отдельную обмотку такого источника питания, то получим однофазный переменный ток, идущий в линию. Напряжение в десятки тысяч вольт может вырабатывать генератор. 220 В потребитель получает с распределительного трансформатора.

Любой генератор переменного тока устройство обмоток имеет стандартное, но подключение к нагрузке бывает двух типов:

  • звездой;
  • треугольником.

Принцип работы генератора переменного тока, включенного звездой, предполагает объединение всех проводов (нулевых) в один, которые идут от нагрузки обратно к генератору. Это обусловлено тем, что сигнал (электрический ток) передается в основном через выходящий провод обмотки (линейный), который и называют фазой. На практике это очень удобно, ведь не нужно тянуть три дополнительных провода для подключения потребителя. Напряжение между линейными проводами и линейным и нулевым проводом будут отличаться.

Соединяя треугольником обмотки генератора, их замыкают друг с другом последовательно в один контур. Из точек их соединения выводят линии к потребителю. Тогда вообще не нужен нулевой провод, а напряжение на каждой линии будет одинаковым независимо от нагрузки.

Преимуществом трехфазного тока перед однофазным является его меньшая пульсация при выпрямлении. Это положительно сказывается на питаемых приборах, особенно двигателях постоянного напряжения. Также трехфазный ток создает вращающийся поток магнитного поля, который способен приводить в движение мощные асинхронные двигатели.

Где применимы генераторы постоянного и переменного тока

Генераторы постоянного тока значительно меньше по размерам и массе, чем машины переменного напряжения. Имея более сложное конструктивное исполнение чем последние, они все же нашли применение во многих отраслях промышленности.

Основное распространение они получили в качестве высокооборотных приводов в машинах, где требуется регулирование частоты вращения, например, в металлообрабатывающих механизмах, подъемниках шахт, прокатных станах. В транспорте такие генераторы установлены на тепловозах, различных судах. Множество моделей ветрогенераторов собраны на базе источников постоянного напряжения.

Генераторы постоянного тока специального назначения применяют в сварке, для возбуждения обмоток генераторов синхронного типа, в качестве усилителей постоянного тока, для питания гальванических и электролизных установок.

Назначение генератора переменного тока — вырабатывать электроэнергию в промышленных масштабах. Такой вид энергии подарил человечеству Никола Тесла. Почему именно изменяющий полярность ток, а не постоянный нашел широкое применение? Это связано с тем, что при передаче постоянного напряжения идут большие потери в проводах. И чем длиннее провод, тем потери выше. Переменное напряжение можно транспортировать на огромные расстояния при гораздо меньших затратах. Причем легко можно преобразовывать переменное напряжение (понижая и повышая его), который выработал генератор 220 В.

Заключение

Человек до конца не познал природу магнетизма, который пронизывает все вокруг. И электрическая энергия – это лишь малая часть открытых тайн мироздания. Машины, которые мы называем генераторами энергии, по сути очень просты, но то, что они могут нам дать, просто поражает воображение. Все же настоящее чудо здесь не в технике, а в мысли человека, которая смогла проникнуть в неисчерпаемый резервуар идей, разлитых в пространстве!

fb.ru

Автомобильный генератор: принцип действия, неисправности

Любая автомашина оборудуется бортовой электросетью, на которую возлагается множество задач – от пуска двигателя посредством электрического стартера и выработки искры, которая воспламеняет топливовоздушную смесь до обеспечения работы фар, магнитолы, сигнализации и других устройств. Все перечисленное оборудование потребляет электроэнергию, которая вырабатывается двумя элементами – генератором и аккумулятором. В этой статье мы расскажем о том, как устроен и работает автомобильный генератор, каковы его основные неисправности и на что нужно обратить внимание при эксплуатации.

Для чего нужен генератор?

Подача электроэнергии для питания бортовой сети до момента запуска ДВС осуществляется аккумуляторной батареей. Однако АКБ не может вырабатывать ток, она лишь хранит его в себе, отдавая по необходимости. По этой причине использовать аккумулятор для постоянного обеспечения работы автомобильного электрооборудования нельзя – он довольно быстро отдаст всю электроэнергию и полностью разрядится. Даже при пуске силового агрегата батарея отдает значительную часть заряда, так как стартер потребляет очень много электричества.

Генератор авто обеспечивает восстановление заряда АКБ и подачу питания ко всем потребителям, подключенным к бортовой сети. Он не хранит в себе электричество, как аккумулятор, а непрерывно производит его в ходе работы двигателя. Но пока ДВС не запущен, этот узел не работает, и функция питания бортовой сети выполняется аккумуляторной батареей.

Работа автомобильного генератора напоминает действие электродвигателя, только в обратном порядке. Электромотор получает энергию и преобразует ее в механическое действие, в то время как автогенератор преобразует механическое вращение ротора в электроэнергию.

Кратко принцип, по которому работает автомобильный генератор, можно объяснить так: вращение ротора приводит к образованию магнитного поля, а оно воздействует на обмотку статора. Это приводит к возникновению в последней электротока, который затем подается для питания включенных в бортовую сеть ТС потребителей.

Однако работа автогенератора имеет некоторые особенности, которые необходимо учитывать.  Современный электрогенератор, устанавливаемый в машинах, имеет три фазы и вырабатывает переменный ток, в то время как для питания бортовой сети необходим постоянный. Кроме того, вырабатываемый электроток должен иметь строго определенные параметры, иначе велика вероятность того, что он выведет из строя оборудование. Чтобы не допустить этого, узел комплектуется дополнительными элементами.

Устройство автомобильного генератора

Автогенератор включает в себя несколько составляющих:

  • Ротор.
  • Статор.
  • Блок щеток.
  • Регулятор напряжения.
  • Выпрямительный блок (диодный мост).

1 — задний подшипник; 2 — выпрямительный блок; 3 — контактные кольца; 4 — щетка; 5 — щеткодержатель; 6 — кожух; 7 — диод; 8 — втулка подшипника; 9 — винт; 10 — задняя крышка; 11 — крыльчатка; 12 — винт; 13 — ротор; 14 — обмотка ротора; 15 — передняя крышка; 16 — вал ротора; 17 — шайба; 18 — гайка; 19 — шкив; 20 — передний подшипник; 21 — обмотка ротора; 22 — статор.

Ротор

Ротором (от англ. rotation — вращение) называется подвижная часть автогенератора. Она представляет собой вал с расположенной на ней обмоткой возбуждения, находящейся между двумя полюсными половинками. Последние изготавливаются штамповкой, на каждой из них имеется шесть выступов в форме клюва, расположенных сверху обмотки. Эти половинки образуют систему полюсов и контактные кольца. Задача колец заключается в подаче электротока на обмотку через ее выводы.

Обмотка возбуждения предназначена для создания магнитного поля. Для решения этой задачи на нее должен быть подан слабый электроток. До запуска силового агрегата подачу тока для образования магнитного поля осуществляет АКБ. Когда ДВС заработает, и число оборотов достигнет нужной величины, подача тока на обмотку возбуждения будет производиться генератором

На роторе, кроме того, размещены:

  • Приводной шкив.
  • Подшипники качения.
  • Охлаждающее устройство (вентилятор).

Ротор располагается внутри статора, зажатого между крышками корпусной части. Крышки снабжены посадочными местами, в которых помещаются роторные подшипники. Кроме того, в крышке, расположенной со стороны приводного шкива, имеются отверстия для вентиляции.

Схема вентиляции генераторов

Статор

Этот элемент, в отличие от вышеописанного, неподвижен (статичен), из-за чего и получил свое название. Его задача заключается в получении электротока переменной величины, возникающего под влиянием магнитного поля ротора. Статор состоит из обмоток и сердечника. Последний изготавливается из листовой стали и имеет пазы для укладки трех обмоток (по количеству фаз). Обмотки могут укладываться одним из двух способов: петлевым или волновым. Схема их соединения также может быть разной – в форме звезды или треугольника.

1 — сердечник; 2 — обмотка; 3 — пазовый клин; 4 — паз; 5 — вывод для соединения с выпрямителем.

При подключении по схеме «звезда» все обмотки соединяются вместе одним из концов в общей точке. Их вторые концы выполняют роль выводов. Схема «треугольник» предусматривает соединение обмоток по другому принципу: 1-я со 2-й, 2-я – с 3-ей, а 3-я, в свою очередь – с 1-й. В этом случае функцию выводов выполняют точки соединения. Наглядно обе схемы показаны на рисунке.

Схема «звезда» и «треугольник»

Блок щеток

Задача этой составляющей генератора заключается в передаче электричества на обмотку возбуждения. Конструктивно блок представляет собой корпус с расположенной в нем парой подпружиненных графитных щеток. Последние прижимаются с помощью пружин к контактным кольцам, но жестко с ними не скреплены.

Регулятор напряжения

Регулятор нужен для того, чтобы поддерживать величину напряжения на выходе в установленных пределах. Это необходимо, поскольку количество тока, как и его параметры, зависит от числа оборотов двигателя, а долговечность аккумулятора напрямую связана с подаваемой разностью потенциалов. Недостаточное напряжение приведет к «хроническому» недозаряду АКБ, а избыточное – к перезаряду. Как в первом, так и во втором случае срок службы батареи заметно снизится. Современные автомобили комплектуются электронными полупроводниковыми регуляторами.

Регулятор напряжения

Диодный мост (выпрямительный блок)

Задача этого элемента заключается в том, чтобы преобразовывать переменный ток, поступающий на него, в постоянный, необходимый для питания бортовой сети. Конструктивно он состоит из теплоотводящих пластин, в которые вмонтированы диоды в количестве 6 штук – по 2 на каждую статорную обмотку (на «+» и на «-») .

Принцип работы автомобильного генератора

Разберемся теперь, как работает автогенератор. При повороте ключа в замке зажигания напряжение поступает на обмотку, проходя при этом через контактные кольца, а также через блок щеток. Результатом становится возникновение вокруг обмотки возбуждения магнитного поля. Оно постоянно вращается вместе с ротором, воздействуя на статорные обмотки. На выводах последних возникает переменный электроток, подающийся затем на диодный мост. На выходе выпрямительного блока ток уже имеет постоянную величину. Далее он подается на регулятор напряжения, от которого идет на графитные щетки, обеспечивает питание потребителей, включенных в бортовую сеть, и подзарядку аккумуляторной батареи.

Напряжение на выходе устройства регулируется следующим образом. Регулятор, функционирующий совместно с блоком щеток, меняет величину напряжения, которое поступает на обмотку. Это приводит к изменению параметров магнитного поля, а также количества вырабатываемой электроэнергии. Кроме того, регулятор осуществляет термокомпенсацию, суть которой заключается в том, что напряжение меняется обратно пропорционально температуре (чем она ниже, тем разность потенциалов больше, и наоборот).

Основные неисправности автомобильного генератора

Этот узел достаточно надежен, и при правильной эксплуатации не ломается долго. Тем не менее, выходы его из строя все же случаются, и причины неполадок могут иметь электрический или механический характер.

Электрические неисправности

Такие неполадки случаются чаще механических, правильно определить их и устранить достаточно сложно. Это может быть замыкание обмоток возбуждения на статоре или роторе, их обрыв, поломка регулятора напряжения или пробой диодов на выпрямительном блоке. Подобные проблемы опасны еще и тем, что они отрицательно сказываются на аккумуляторе до тех пор, пока не будут выявлены и устранены. Так, вышедший из строя регулятор напряжения приведет к тому, что батарея будет постоянно перезаряжаться. При этом внешних признаков неисправности практически не имеется, чаще всего ее выявляют при комплексной диагностике, измерив на автогенераторе величину выходного напряжения, или заподозрив неладное, когда аккумуляторы один за другим выходят из строя, отработав всего несколько месяцев.

Обрыв или замыкание обмоток возбуждения устраняется с помощью перемотки. Остальные электрические неисправности исправляют, меняя вышедшую из строя деталь.

Механические неисправности

Причиной появления неполадок механического характера, как правило, является износ графитовых щеток, приводного шкива или щеток, а также обрыв ремня привода генератора. Эти неисправности довольно легко диагностировать по посторонним шумам, раздающимся при работе автогенератора. Устраняются эти неполадки заменой нерабочего элемента.

Заключение

Напоследок остается дать совет периодически проводить диагностику генератора, проверяя на износ его составляющие и измеряя величину напряжения на выходе узла. Это позволит своевременно выявить и устранить возникшие неисправности, тем самым избежав проблем с аккумулятором и электрическими устройствами, включенными в бортовую сеть транспортного средства.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

bodyshop-info.ru

устройство, принцип работы и схемы подключения, виды генераторов, особенности их конструкции и работы

Генераторный узел представляет собой электродвигатель, предназначенный для преобразования механической энергии в электрическую. В зависимости от типа и назначения габариты, устройство и принцип работы генераторов переменного тока могут будут отличаться.

Содержание

Открытьполное содержание

[ Скрыть]

Как работает генератор переменного тока?

Работа генератора заключается в создании электродвижущей силы в проводнике под действием изменяющегося магнитного поля.

Схема и устройство простейшего генератора

По конструкции электрогенератор включает в себя следующие элементы:

  • вращающаяся индукторная составляющая, называющаяся рамкой;
  • движущая щеточная часть;
  • коллекторное приспособление, оснащенное щетками, предназначенное для отвода напряжения;
  • магнитное поле;
  • контактные кольца.

Схема простейшего генераторного устройства переменного тока

Принцип действия

Образование электродвижущей силы в обмотках статорного механизма осуществляется после появления электрополя. Для последнего характерны вихревые образования. Данные процессы происходят в результате изменения магнитного потока. Причем последний меняется из-за быстрого вращения роторного механизма.

Ток от него поступает в электроцепь посредством контактных элементов, выполненных в виде деталей скольжения. Для более упрощенного прохождения напряжения к концам обмотки производится подсоединение колец. К этим контактным составляющим подключаются неподвижные щеточные элементы. С их помощью между электропроводкой и обмоткой роторного устройства появляется связь.

В витках магнитного элемента происходит образование поля, в нем формируется ток небольшой величины. По сравнению с напряжением, которое выдает простейший генераторный агрегат на внешнюю электроцепь. Если узел характеризуется небольшой мощностью, то в нем поле образует постоянный магнит, который может прокручиваться. Благодаря такому устройству и принципу работы генератора переменного тока в целом упрощается вся система. Поэтому из конструкции можно убрать щетки и контактные элементы.

Канал «Top Generators» наглядно и схематично в видеоролике показал принцип функционирования агрегата.

Основные виды генераторов переменного тока

Между собой устройства, позволяющие генерировать напряжение, делятся на синхронные и асинхронные. Они могут использоваться в различных сферах жизнедеятельности, но работать будут по разному принципу.

Синхронный генератор

Одним из свойств такого типа устройств является то, что частота тока, который оно воспроизводит, пропорциональна скорости вращения роторного механизма.

Между собой синхронные агрегаты делятся на несколько типов:

  1. Повышенной частоты. В основе принципа функционирования устройства лежит процесс изменения магнитного потока, достигающегося путем вращения роторного механизма касательно неподвижного статора. Такой тип агрегатов используется преимущественно для питания антенн длинноволновых станций на расстоянии до 3 км. Подключать устройства для работы с более короткими волнами не получится, поскольку необходимо увеличить значение частоты.
  2. Гидротурбинные агрегаты работают за счет активации гидравлической турбины, которая приводит в движение узел. В таких устройствах роторный механизм устанавливается на одном шкиве с колесом турбинного элемента. Его мощность может составить до 100 тысяч кВт, если скорость вращения будет 1500 оборотов в минуту, а напряжение — до 16 тыс. В. По массе и габаритам такой тип агрегатов считается самым большим, поскольку в них диаметр одного ротора составляет 15 метров. На величину мощности кружения турбины влияют три параметра — скорость вращения, длина электролинии, а также маховый момент роторного механизма.
  3. Паротурбинные агрегаты, которые приводятся в действие посредством активации паровой турбины. Такой тип устройств функционирует со скоростью вращения 1,5-3 тысячи оборотов в минуту и они бывают двухполосными и четырехполосными. Роторный механизм выполнен в виде большого железного цилиндра, оснащенного прямоугольными пазами, внутри элемента располагается обмотка возбуждения. Корпус статорного устройства всегда неразъемный и выполнен из стали. Общий диаметр агрегата составляет до 1 метра, однако длина его ротора может быть до 6,5 м.
Схема и устройство

Синхронный агрегат конструктивно включает в себя два основных элемента:

  1. Ротор. Это подвижная составляющая оборудования. Она предназначена для преобразования системы вращающихся электрических магнитов, которые питаются от внешнего источника.
  2. Статорный механизм или неподвижная составляющая агрегата. В обмотке этого устройства посредством образования магнитного поля появляется ЭДС, которая идет на наружную электроцепь оборудования. Благодаря таким конструктивным особенностям в цепях нагрузок синхронных электрогенераторов не используются скользящие контакты. Магнитный поток от оборудования, который появляется посредством вращения ротора, возбуждается от стороннего источника. Последний монтируется на общем валу или может подключаться к нему с помощью муфты либо ременной передачи.

Схематическое устройство синхронного генераторного агрегата

Особенности работы

Принцип действия может незначительно отличаться в зависимости от типа устройства — явнополюсного либо неявнополюсного. Количество пар полюсных элементов роторного механизма определяется скоростью вращения узла. Если частота образующейся ЭДС составляет 50 Гц, то при 3 тысячах об/мин неявнополюсное устройство обладает одной парой полюсов. В явнополюсных агрегатах, вращающихся при 50-750 оборотах в минуту, количество пар полюсных элементов составит от 60 до 4.

В маломощных синхронных агрегатах питание обмотки возбуждения осуществляется посредством воздействия выпрямленного тока. Электроцепь появляется в результате активации трансформаторных устройств, которые входят в общую цепь нагрузки узла. Также она включает в себя полупроводниковый выпрямительный блок, который может собираться по любой схеме, но обычно как трехфазный мост. Основная электроцепь включает в себя обмотку возбуждения агрегата с регулировочным реостатным устройством.

Процедура самовозбуждения оборудования состоит в следующем:

  1. При запуске установки в магнитной составляющей образуются небольшие ЭДС, это происходит благодаря явлению остаточной индукции. Одновременно в рабочей обмотке агрегата появляется ток.
  2. В результате ЭДС образуется во вторичных электрообмотках трансформаторных устройств. А в электроцепи появляется небольшой ток, который способствует усилению общей индукции магнитного поля.
  3. Увеличение параметра ЭДС осуществляется до момента, пока магнитная система агрегата не возбудится до конца.

Асинхронный генератор

Такой узел представляет собой устройство, производящее электроэнергию с использованием принципа действия асинхронного двигателя. Данный тип агрегатов именуется индукционным. Асинхронное устройство обеспечивает оперативный поворот роторного механизма, а его скорость вращения намного выше по сравнению с синхронным. Простой двигатель может применяться в качестве генераторной установки без дополнительных настроек.

Асинхронные агрегаты используются в разных сферах:

  • для моторов ветровых электрических станций;
  • для автономного питания жилых помещений и частных домов либо в качестве миниатюрных ГЭС-станций;
  • для инверторных агрегатов сварки;
  • с целью организации бесперебойного питания от переменного тока.
Схема и устройство

Схематическое подключение асинхронного агрегата

Основными составляющими элементами данного типа устройств считаются статорный механизм и ротор. Первый является неподвижным, а второй прокручивается внутри него. Ротор отделен от статорного механизма воздушным зазором. Чтобы снизить величину вихревых токов, сердечники составляющих элементов делаются из отдельных листов электротехнической стали. Их толщина в зависимости от производителя может составить от 0,35 до 0,5 мм. Сами листы оксидируются при изготовлении, то есть подвергаются термической обработке, что позволяет увеличить их поверхностное сопротивление.

Сердечник статорного механизма устанавливается внутрь станины, которая является наружной частью агрегата. На внутренней стороне детали располагаются пазы, в них находится обмотка. Статорная электрообмотка зачастую выполняется из катушек с небольшим шагом. В ее основе используется медный изолированный проводник.

Особенности работы

Асинхронный тип двигателей производит электроэнергию при увеличенной скорости прокручивания роторного механизма. Этот параметр всегда выше, чем у синхронных агрегатов. При прокручивании роторного устройства и выработки электричества потребуется сильный крутящий момент. Если в двигателе используется так называемый вечный холостой ход, это обеспечит равную скорость прокручивания в течение всего ресурса эксплуатации установки.

Схемы подключения

По числу использующихся фаз все генераторные агрегаты делятся на две группы:

  • однофазные;
  • трехфазные.

Однофазный генератор

Схема подключения оборудования с одной фазой

Этот тип устройств используется для работы с любыми потребителями электроэнергии, главное — чтобы они были однофазными.

Самые простые конструкции состоят из:

  • магнитного поля;
  • прокручивающейся рамки;
  • коллекторного устройства, предназначенного для отвода тока.

Благодаря наличию последнего в результате рамочного прокручивания через щетки образуется постоянный контакт с рамкой. Параметры тока, который меняется с учетом закона гармоники, будут разными и передаются на щеточный узел, а также в схему потребителей напряжения. На сегодняшний день однофазные агрегаты являются наиболее популярным типом автономного источника питания. Они могут использоваться для подключения практически всех бытовых электроприборов.

Трехфазный генератор

Такой тип устройств относится к классу универсальных, но более дорогих агрегатов. Отличительная особенность трехфазных генераторов заключается в необходимости постоянного и дорогостоящего технического обслуживания. Несмотря на это, данный тип установок получил наибольшее распространение.

Это обусловлено следующими преимуществами:

  1. В основе агрегата используется вращающееся круговое магнитное поле. Это обеспечивает возможность хорошей экономии при разработке оборудования.
  2. Трехфазные генераторы состоят из уравновешенной системы. Это обеспечивает ресурс эксплуатации агрегата в целом.
  3. В работе трехфазного устройства одновременно используется два напряжения — линейное и фазовое. Оба применяются в единой системе.
  4. Одно из основных преимуществ — повышенные экономические показатели. Это обеспечивает снижение материалоемкости силовых проводов, а также трансформаторных агрегатов. Благодаря данной особенности упрощается процедура передачи электричества на большие расстояния.
Схема соединения «звездой»

Данный тип подключения подразумевает электросоединение концов обмоток в определенной точке, которая именуется «нулем». При выполнении такого подсоединения нагрузку к генераторному узлу можно подать посредством трех или четырех кабелей. Проводники от начала обмоток считаются линейными. А основной кабель, который идет от нулевой точки, является нулем. Параметр напряжения между проводниками считается линейным (эта величина выше в 1,73 раза по сравнению с фазной).

Схема типа «звезда» для подключения трехфазного оборудования

Одной из основных особенностей данного варианта является равенство токов. Четырехпроводной тип «звезды» с нейтральным кабелем считается самым распространенным. Его использование позволяет предотвратить перекос фаз при подсоединении несимметричной нагрузки. К примеру, если на одном контакте она активная, а на другом — реактивная или емкостная. При использовании такого варианта обеспечивается максимальная защищенность включенного электрооборудования.

Схемы соединения «треугольником»

Данный метод подключения представляет собой последовательное подсоединение обмоток трехфазного агрегата. Конец первой намотки должен быть соединен с началом второй, а ее контакт — с третьей. Затем проводник от обмотки под номером 3 подсоединяется к началу первого элемента.

При такой схеме линейные кабели отводятся от точек подключения обмоток. Параметр линейного напряжения по величине соответствует фазному. А значение первого тока выше второго в 1,73 раза. Описанные свойства актуальны исключительно в случае равномерной нагрузки фаз. Если она будет неравномерной, то параметры необходимо пересчитать графическим или аналитическим способом.

Электросхемы соединений агрегата «треугольником»

Особенности генераторов с разными типами двигателя

Автомобильные и бытовые установки могут разделяться между собой в соответствии с видом топлива, на котором они функционируют. Генераторный узел может работать на бензине или дизеле.

Бензогенераторы

В таких устройствах источником механической энергии является двигатель. Агрегат относится к классу четырехконтактных карбюраторных ДВС. В бензогенераторах используются двигатели, рассчитанные на 1-6 кВт. В продаже можно встретить агрегаты, разработанные для функционирования при 10 кВт, с их помощью можно обеспечить питание всех световых и электроприборов в частном доме.

Бензогенераторы могут похвастаться невысокой стоимостью и длительным ресурсом эксплуатации, хотя по сравнению с дизельными — они немного меньше. Выбор агрегата осуществляется с учетом нагрузок, в условиях которых он будет функционировать. Если узел работает с большим пусковым током и применяется для электросварки, то лучше отдать предпочтение синхронным устройствам. При выборе асинхронного типа агрегата двигатель сможет справиться с пусковыми токами. Но важно, чтобы генераторная установка была полностью загружена, в противном случае топливо будет расходоваться нецелесообразно.

Канал «Olifer TV» рассказал о выборе агрегатов для частного дома в соответствии с типом горючего, на котором он будет использоваться.

Дизельные генераторы

Такой агрегат приводит в действие мотор, функционирующий на дизеле.

В его основе используется:

  • механическая составляющая;
  • панель с кнопками, предназначенная для управления;
  • система подачи топлива;
  • охладительный узел;
  • система смазки трущихся компонентов и узлов.

Мощность генераторной установки полностью определяется аналогичным параметром самого двигателя. Если она будет невысокой, к примеру, для запитки бытового электрооборудования, то лучше отдать предпочтение бензиновым установкам. Дизельный тип агрегатов целесообразно использовать там, где требуется высокая мощность. Двигатели внутреннего сгорания обычно применяются с верхней установкой клапанов. Они обладают более компактными размерами, а также высокой надежностью.

Кроме того, дизельные ДВС при функционировании выделяют меньше токсичных газов, опасных для здоровья человека, и более удобны в плане ремонта. Специалисты рекомендуют отдать предпочтение агрегатам, корпус которых выполнен из стали, так как пластмасса имеет меньший ресурс использования.

Более надежными являются генераторные дизельные установки, не оснащенные щетками.

Напряжение, которое они вырабатывают, стабильнее. В среднем, если бак заправлен дизельным горючим под завязку, это обеспечит возможность работы генератора в течение семи часов. Если агрегат будет установлен стационарно, то его конструкцию можно дополнить внешним резервуаром для залива топлива.

Канал «Фабрика Тока» продемонстрировал работу дизельного агрегата, использующегося для обеспечения энергией частного дома.

Инверторные генераторы

Производство электрической энергии осуществляется аналогично, как на любой классической модели генератора. В первую очередь производится выработка переменного тока. Он выпрямляется и подается на инверторный узел, а затем преобразуется опять в переменный, только с необходимыми техническими параметрами.

В основе агрегата используется электронный модуль, включающий в себя:

  • выпрямительный узел;
  • микропроцессорное устройство;
  • преобразовательный механизм.

По типу выходного напряжения инверторные агрегаты могут разделяться на:

  1. Прямоугольные. Такой вид устройств считается наиболее дешевым. Его энергии хватит только для запитки электроинструментов и маломощных приборов.
  2. Устройства с трапецеидальным сигналом. Могут использоваться для питания большинства электроприборов, кроме высокочувствительной техники. Стоимость таких агрегатов средняя.
  3. Устройства, работающие с синусоидальным напряжением. Такие генераторы характеризуются стабильными характеристиками и подходят для большинства электрических приборов.
  1. Прямоугольные. Такой вид устройств считается наиболее дешевым. Его энергии хватит только для запитки электроинструментов и маломощных приборов.
  2. Устройства с трапецеидальным сигналом. Могут использоваться для питания большинства электроприборов, кроме высокочувствительной техники. Стоимость таких агрегатов средняя.
  3. Устройства, работающие с синусоидальным напряжением. Такие генераторы характеризуются стабильными характеристиками и подходят для большинства электрических приборов.

Инверторные агрегаты могут функционировать без перерыва либо промежутками. В качестве объектов потребления энергии обычно выступают учреждения, где нельзя допустить перепадов напряжения.

Основные преимущества инверторных установок:

  • маленькие размеры и масса;
  • низкий расход горючего в результате регулировки выработки определенного объема электричества, необходимого в конкретный момент времени;
  • инверторные агрегаты могут функционировать в течение короткого временного интервала с перегрузкой.

Минусы:

  • высокая стоимость устройств по сравнению с классическими вариантами генераторных установок;
  • повышенная чувствительность к температурным изменениям в электронной составляющей;
  • невысокий уровень мощности установки;
  • дорогостоящий ремонт электронного модуля при его поломке.

Использование инверторных устройств актуально в случае, когда требуемая величина мощности составляет не больше 6 кВт. Если агрегат будет использоваться на постоянной основе, то лучше отдать предпочтение классическому типу.

Канал «Garage КАХОВКА» протестировал бензиновую установку инверторного класса от производителя «ПилоД».

Как сделать генератор переменного тока своими руками

Для самостоятельного изготовления асинхронного агрегата понадобится следующее:

  1. Мотор. Двигатель можно соорудить своими руками, но эта процедура слишком длительная и трудоемкая. Поэтому лучше использовать агрегат от старого неработающего бытового электрооборудования. Оптимальным вариантом будет применение двигателя от дренажного насосного устройства, стиральной машинки либо пылесоса.
  2. Статорный механизм. Рекомендуется приобрести готовое устройство, оборудованное обмоткой.
  3. Комплект электрических проводов.
  4. Изолента, допускается применение термоусадочных трубок.
  5. Трансформаторный узел или выпрямительный блок. Этот элемент потребуется в случае, если на выходе генератора переменного тока энергия будет иметь разную мощность.

Перед началом работ необходимо сделать несколько манипуляций, которые позволят правильно выполнить расчет параметра мощности агрегата:

  1. Использующийся двигатель подключается к электросети для определения скорости вращения. Чтобы выполнить эту задачу, потребуется специальное устройство — тахометр. После считывания информации полученное значение надо записать и прибавить к нему еще 10%. Это — компенсаторная величина. Если добавить 10% к скорости вращения, это позволит предотвратить перегрев агрегата во время функционирования.
  2. Выполняется подбор конденсаторных элементов с учетом требуемой величины мощности. Если на этом этапе возникли сложности, можно воспользоваться таблицей.
  3. Генераторная установка во время работы продуцирует электроэнергию, соответственно, заранее необходимо продумать заземление устройства. При его отсутствии и некачественной изоляции агрегат не только износится быстрее, но и может представлять опасность для человека.
  4. После подготовки выполняется процедура сборки, она не займет много сил. К двигателю, который будет использоваться в основе, подключаются конденсаторные элементы в соответствии со схемой. В ней указана очередность подсоединения компонентов. Надо учесть, что величина емкости каждой конденсаторной детали соответствует предыдущему устройству.
Схема сборки простого генератора переменного тока
Таблица выбора емкости конденсатора для агрегата

Полученный узел сможет обеспечить энергией электрическую пилу, циркулярку или болгарку, т. е. любой маломощный инструмент.

При использовании самодельного генератора переменного тока нельзя допустить перегрева двигателя, иначе это приведет к его поломке и даже взрыву.

В процессе сборки и эксплуатации надо учитывать следующие нюансы:

  1. Если коэффициент полезного действия падает прямо пропорционально в соответствии с длительностью работы, это норма. Данный нюанс связан с тем, что периодически генераторный агрегат должен отдыхать и остывать. Важно время от времени снижать температуру двигателя до 40 градусов Цельсия.
  2. Поскольку в простой схеме устройства не используется автоматика, потребитель должен сам контролировать все процессы работы приспособления. Время от времени к агрегату необходимо подключать измерительное оборудование — тахометр, вольтметр.
  3. Перед выполнением сборки нужно правильно подобрать электроприборы в соответствии с расчетом его технических параметров и свойств. Приведенная схема наиболее простая в плане реализации.

Видео «Принцип действия генераторного устройства»

Канал «Halyk Smart» рассказал о нюансах функционирования агрегата переменного тока.

 Загрузка …

razvodka.com

Как работает генератор автомобиля: устройство и схема

Многие водители не знают, как работает генератор автомобиля и это явная проблема, как для них, так и для их транспорта. А ведь все довольно просто и если проявить желание, выделить необходимое количество времени, чтобы узнать свой автомобиль получше, а также понять принципы работы его механизмов, вы сможете самостоятельно отремонтировать генератор

Содержание статьи

Устройство

Устройство генератора автомобиля состоит из большого количества элементов, взаимодействующих между собой. Я считаю, что каждый автолюбитель, уважающий свою машину, должен знать все о принципах ее работы. Шкив выступает посредником в процессе передачи механической энергии к валу генератора от двигателя с помощью ремня. Корпус включает в себя две крышки – передняя, которая находится на стороне шкива, и задняя, размещенная со стороны нахождения контактных колец. Их назначение – скреплять статор, также устанавливать генератор на поверхности двигателя и размещать подшипники самого ротора. На задней крышке можно увидеть щеточный узел, регулятор напряжения, выпрямитель и внешние выводы для присоединения системы электрооборудования.

Ротор представляет собой вал из стали, на котором размещены две втулки клювообразной формой. Между ними есть обмотка, из которой выводы соединяются прямо с контактными кольцами. Оборудование этой группы деталей, в основном, составляют кольца из меди цилиндрической формы.

В пазах статора размещена обмотка трехфазного типа, в которой и вырабатывается мощность данного генератора. Деталь, именуемая сборкой с диодами, в себе объединяет сразу 6 очень мощных диодов, которые по три запрессованы в теплоотводах. Регулятор напряжения представляет собой устройство, которое поддерживает напряжение в прежде заданных пределах во время изменения нагрузок. Щеточный узел представляет собой съемную конструкцию из пластмассы, в которой есть специальные подпружиненные щетки, которые контактируют с роторными кольцами.

Крепление генератора

Привод генератора осуществляется временной передачей от шкива коленчатого вала. С ростом его диаметра на валу и по мере уменьшения диаметра того же шкива повышаются обороты генератора. Это значит, что потребитель сможет получить более сильный ток.

На всех новых авто привод осуществляется при помощи поликлинового ремня. Он обладает особой гибкостью и разрешает установить шкив небольшого диаметра на самом генераторе. Это дает куда высшие передаточные отношения, чтобы использовать генераторы высокооборотного типа. Это производится с помощью натяжных роликов при наличии этой детали неподвижного типа.

Генераторы крепят при помощи болтов, размещенных в передней части автомобильного двигателя. Используются при этом кронштейны. На крышках есть натяжная пружина, а также крепежные лапы. Если же они размещены при помощь двух лап, они будут располагаться сразу на двух крышках, но если лапа будет одна – она будет размещена только на передней.

Как работает?

Во время пуска двигателя стартер будет основным потребителем энергии.

Работа сопровождается сотнями А силы тока, это провоцирует понижение напряжения во всем аккумуляторе. Подобный режим предусматривает потребление электроэнергии лишь при помощи аккумулятора, который в это время интенсивно поддается разряжению.

После пуска двигателя в качестве основного источника энергии выступает генератор. Он – источник подзарядки аккумулятора, пока продолжается работа двигателя.

Если он не будет работать, тогда аккумулятор слишком быстро разрядиться и я настоятельно советую не забывать об этом. Генератор автомобиля помогает обеспечивать нужную для заряда аккумулятора силу тока, а также ток для задействования электроприборов. После разрядки аккумулятора зарядный ток понижается. Но генератор все еще будет источником электропитания, сам же аккумулятор просто сглаживает разные пульсации в напряжении.

Если будут включены приборы, потребляющие много энергии, вроде обогревателя фар, а показатель частоты роторного вращения будет небольшой, общий ток потребления может превысить тот, на который рассчитан генератор. При таком раскладе нагрузка сместится на аккумулятор, вследствие чего он начнет разряжаться. Как можно убедиться, принцип работы генератора довольно простой.

Назначение регулятора напряжения

После изучения устройства генератора, у многих возникает вопрос о роли регулятора напряжения, который когда-то возник и у меня. В основном, его задача заключается в поддержке напряжения в неких пределах, чтобы обеспечить оптимальный режим работы электроприборов, которые входят в бортовую сеть. Каждый регулятор обладает элементами измерения, которые, по сути, исполняют роль датчиков. Кроме того, есть исполнительные элементы, которые исполнят функцию регулирования.

Изготовленные по современным технологиям генераторы, которыми сегодня оснащается любой автомобиль, оснащены электронными полупроводниковыми регуляторами, которые обычно встраивают внутрь. Существует разнообразие оформления и схем, но у всех аналогичный принцип работы.

Регуляторы напряжения склонны к термокомпенсации, которая изменяет уровень подводимого к аккумулятору напряжения для оптимального уровня заряда АКБ в зависимости от температуры воздуха под капотом. С ее понижением повышается напряжение, а с повышением – напряжение падает. Некоторые из регуляторов оснащены ручными переключателями режимов к «зиме» или «лету».

Иными словами, регулятор исполняет такую важную функцию, как стабилизация уровня напряжения в процессе изменения уровня нагрузки и частоты вращения с помощью корректировки тока возбуждения. При отсутствии регулятора напряжение самого генератора зависит от уровня частоты вращения ротора, от магнитного потока, который создается по причине обмотки возбуждения. Также это зависит и от величин и силы тока в данной обмотке, которые отдаются потребителям. С увеличением частоты вращения совместно с силой тока, происходит рост напряжения.

Электронные регуляторы измеряют ток возбуждения при помощи включения от сети его обмотки, которая питается электричеством, при чем изменяется продолжительность времени, за которое включается обмотка возбуждения. Если для проведения стабилизации всего напряжения потребуется понизить силу тока того самого возбуждения, уменьшается общее время обмотки возбуждения. Ну а если нужно будет увеличить, то я советую его увеличить.

Видео “Принцип работы генератора автомобиля”

На записи показано по какому принципу работают автомобильные генераторы переменного тока.

 

mineavto.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *